Том 70, № 1 (2024): Функциональные пространства. Дифференциальные операторы. Проблемы математического образования
- Год: 2024
- Статей: 11
- URL: https://journals.rudn.ru/CMFD/issue/view/1751
- DOI: https://doi.org/10.22363/2413-3639-2024-70-1
Весь выпуск
Статьи
Дискретные модели кинетических уравнений типа Больцмана
Аннотация
Известные нелинейные кинетические уравнения, в частности, волновое кинетическое уравнение и квантовые уравнения Нордхейма—Улингa—Уленбека, рассматриваются как естественное обобщение классического пространственно-однородного уравнения Больцмана. С этой целью введем общее кинетическое уравнение типа Больцмана, зависящее от функции четырех действительных переменных \(F(x,y; v,w).\) Предполагается, что функция \(F\) удовлетворяет некоторым простым соотношениям. Изучены основные свойства этого кинетического уравнения. Показано, что упомянутым выше частным кинетическим уравнениям соответствуют различные полиномиальные формы функции \(F.\) Далее рассматривается задача дискретизации общего кинетического уравнения типа Больцмана на основе идей, аналогичных тем, что используются для построения дискретных скоростных моделей уравнения Больцмана. Основное внимание уделено дискретным моделям волнового кинетического уравнения. Показано, что такие модели имеют монотонный функционал, аналогичный \(H\)-функции Больцмана. Сформулирована и исследована теорема существования, единственности и сходимости к равновесию решений задачи Коши с произвольными положительными начальными условиями. Также кратко обсуждаются различия в долговременном поведении решений волнового кинетического уравнения и решений его дискретных моделей.
Задача Сильвестра и множества единственности в классах целых функций
Аннотация
В статье изучается задача о нахождении по выбранной последовательности комплексных чисел, стремящейся к бесконечности, максимально широкого в заданной шкале класса целых функций, для которого данная последовательность является множеством единственности. В рамках этой общей задачи установлены теоремы единственности в различных классах целых функций, выделяемых ограничениями на тип и индикатор при уточненном порядке. В частности, дополняется доказанная ранее теорема единственности, использующая понятие круга Сильвестра индикаторной диаграммы целой функции экспоненциального типа. Обсуждается точность полученных результатов и их связь с известными фактами.
Задача Римана для основных модельных случаев уравнений Эйлера-Пуассона
Аннотация
В статье построено решение задачи Римана для неоднородной нестрого гиперболической системы двух уравнений, являющейся следствием уравнений Эйлера-Пуассона без давления [9]. Эти уравнения могут быть рассмотрены для случаев притягивающей и отталкивающей силы, и для случаев нулевого и ненулевого основного фона плотности. Решение задачи Римана для каждого случая является нестандартным и содержит дельтаобразную сингулярность в компоненте плотности. В [16] построено решение для комбинации, соответствующей модели холодной плазмы (отталкивающая сила и ненулевой фон плотности). В настоящей работе рассмотрены три оставшихся случая.
Метод осреднения для задач о квазиклассических асимптотиках
Аннотация
Разрабатывается метод осреднения для операторов с быстроосциллирующими коэффициентами, предназначенный для использования в задачах о квазиклассических асимптотиках и не предполагающий периодической структуры осцилляций коэффициентов. Исследуются алгебры локально усреднимых функций, доказывается теорема об осреднении для дифференциальных операторов общего вида, некоторые особенности применения метода иллюстрируются на примере волнового уравнения.
О предельных циклах автономных систем
Аннотация
Рассматривается задача о существовании предельных циклов у автономных систем дифференциальных уравнений. Излагаются вполне элементарные соображения, которые могут быть полезны при обсуждении качественных вопросов, возникающих в курсе обыкновенных дифференциальных уравнений. Установлено, что любая простая замкнутая кривая, заданная уравнением \(F(x,y)=1\) с достаточно общей функцией \(F,\) является предельным циклом для соответствующей автономной системы на плоскости (и даже для бесконечного множества систем, зависящих от вещественного параметра). Эти системы выписываются явно. Подробно разобрано несколько конкретных примеров. Приведены графические иллюстрации.
Коэрцитивные оценки для многослойно-вырождающихся дифференциальных операторов
Аннотация
Получены условия, при которых данный многослойный дифференциальный оператор \(P(D)\) (многочлен \(P(\xi)\)) мощнее оператора \(Q(D)\) (многочлена \(Q(\xi)\)). Это применяется для получения оценок мономов, что, в свою очередь, с использованием теории мультипликаторов Фурье, применяется при получении коэрцитивных оценок производных функций через дифференциальный оператор \(P(D),\) применённый к этим функциям.
Об условиях подчиненности для систем минимальных дифференциальных операторов
Аннотация
В работе приводится обзор результатов об априорных оценках для систем минимальных дифференциальных операторов в шкале пространств \(L^p(\Omega),\) где \(p\in[1,\infty].\) Приведены результаты о характеризации эллиптических и \(l\)-квазиэллиптических систем при помощи априорных оценок в изотропных и анизотропных пространствах Соболева \(W_{p,0}^l(\mathbb R^n),\) \(p\in[1,\infty].\) При заданном наборе \(l=(l_1,\dots,l_n)\in\mathbb N^n\) доказаны критерии существования \(l\)-квазиэллиптических и слабо коэрцитивных систем, а также указаны широкие классы слабо коэрцитивных в \(W_{p,0}^l(\mathbb R^n),\) \(p\in[1,\infty],\) неэллиптических и неквазиэллиптических систем. Кроме того, описаны линейные пространства операторов, подчиненных в \(L^\infty(\mathbb R^n)\)-норме тензорному произведению двух эллиптических дифференциальных полиномов.
Оценка снизу в среднем минимума модуля на окружностяхдля целой функции нулевого рода
Аннотация
Статья написана по материалам совместного доклада авторов, сделанного ими на Шестой Международной конференции <<Функциональные пространства. Дифференциальные операторы. Проблемы математического образования>>, посвященной столетию со дня рождения члена-корреспондента РАН, академика Европейской академии наук Л. Д. Кудрявцева. Для целой функции, представленной каноническим произведением нулевого рода с положительными корнями, доказан следующий результат. При любом \(\delta\in(0,1/3]\) минимум модуля такой функции превосходит в среднем максимум ее модуля, возведенный в степень \(-1-\delta,\) на любом отрезке, отношение концов которого равно \(\exp(2/\delta).\) Основная теорема проиллюстрирована двумя примерами. Первый из них показывает, что вместо показателя \(-1-\delta\) нельзя взять \(-1.\) Второй пример демонстрирует невозможность замены в теореме при малых \(\delta\) величины \(\exp(2/\delta)\) величиной \(28/(15\delta).\)
К геометрическим аспектам бесконечномерных динамических систем
Аннотация
Основная цель работы - построить аналоги символов Кристоффеля для бесконечномерных систем и на этой основе получить уравнения геодезических для таких систем. Указанные аналоги представляют особый интерес в плане выявления взаимосвязи между динамикой систем с бесконечным числом степеней свободы и геометрией Римана, а также геометрией, определяемой псевдоримановой метрикой.
О восстановлении решения задачи Коши для сингулярного уравнения теплопроводности
Аннотация
Излагаются результаты, связанные с решением проблемы о наилучшем восстановлении решения задачи Коши для уравнения теплопроводности с В-эллиптическим оператором Лапласа-Бесселя по пространственным переменным по точно или приближенно известному конечному набору температурных профилей.