On discrete models of Boltzmann-type kinetic equations

Cover Page

Cite item

Abstract

The known nonlinear kinetic equations, in particular, the wave kinetic equation and the quantum Nordheim–Uehling–Uhlenbeck equations are considered as a natural generalization of the classical spatially homogeneous Boltzmann equation. To this goal we introduce the general Boltzmann-type kinetic equation that depends on a function of four real variables \(F(x,y;
v,w)\)
. The function \(F\) is assumed to satisfy certain simple relations. The main properties of this kinetic equation are studied. It is shown that the above mentioned specific kinetic equations correspond to different polynomial forms of the function \(F\). Then the problem of discretization of the general Boltzmann-type kinetic equation is considered on the basis of ideas similar to those used for construction of discrete velocity models of the Boltzmann equation. The main attention is paid to discrete models of the wave kinetic equation. It is shown that such models have a monotone functional similarly to the Boltzmann \(H\)-function. The theorem of existence, uniqueness and convergence to equilibrium of solutions to the Cauchy problem with any positive initial conditions is formulated and discussed. The differences in long time behaviour between solutions of the wave kinetic equation and solutions of its discrete models are also briefly discussed.

About the authors

A. V. Bobylev

Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences; RUDN University

Author for correspondence.
Email: alexander.bobylev47@gmail.com
Moscow, Russia

References

  1. Бобылев А.В. Об одном свойстве дискретных моделей волнового кинетического уравнения// Усп. мат. наук.- 2023.- 78, № 5.-С. 179-180.
  2. Бобылев А.В., Куксин С.Б. Уравнение Больцмана и волновые кинетические уравнения// Препринты ИПМ им. М.В. Келдыша.- 2023.- 031.
  3. Тихонов А.Н., Васильева А.Б., Свешников А.Г. Дифференциальные уравнения.- М.: Наука, 1980.
  4. Arkeryd L. On low temperature kinetic theory: spin diffusion, Bose-Einstein condensates, anyons// J. Stat. Phys. -2013.-150.- С. 1063-1079.
  5. Bobylev A.V. Boltzmann-type kinetic equation and discrete models// ArXiv.- 2023.-2312.16094 [mathph].
  6. Bobylev A.V., Palczewski A., Schneider J. On approximation of the Boltzmann equation by discrete velocity models// C. R. Acad. Sci. Ser. I. Math.- 1995.- 320, № 5.- С. 639-644.
  7. Boltzmann L. Weiter Studien u¨ber das W¨armegleichgewicht unte Gasmoleku¨len// Wien. Akad. Sitzungsber.- 1872.- 66.-С. 275-370.
  8. Broadwell J.E. Study of rarefied shear flow by the discrete velocity method// J. Fluid Mech. -1964.- 19, № 3. -С. 401-414.
  9. Cabannes H. The Discrete Boltzmann Equation: Theory and Applications.- Berkeley: Univ. California, 1980.
  10. Carleman T. Probl`emes Math´ematiques dans la Th´eorie Cin´etique des Gaz.-Uppsala: Almqvist and Wiksell, 1957.
  11. Cercignani C. The Boltzmann Equation and Its Applications.- New York: Springer, 1988.
  12. Dymov A., Kuksin S. Formal expansions in stochastic model for wave turbulence 1: Kinetic limit// Commun. Math. Phys. -2021.- 382.- С. 951-1014.
  13. Escobedo M., Velazquez J.J. On the theory of weak turbulence for the nonlinear Schr¨odinger equation// Mem. Am. Math. Soc.- 2015.- 238.
  14. Nordheim L.W. On the kinetic method in the new statistics and application in the electron theory of conductivity// Proc. R. Soc. London Ser. A. - 1928.- 119.-С. 689-698.
  15. Uehling E.A., Uhlenbeck G.E. Transport phenomena in Einstein-Bose and Fermi-Dirac gases// Phys. Rev. -1933.- 43, № 7.- С. 552-561.

Copyright (c) 2024 Bobylev A.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies