On the Boyarsky-Meyers estimate for the solution of the Dirichlet problem for a second-order linear elliptic equation with drift

Cover Page

Cite item

Abstract

We establish the increased integrability of the gradient of the solution to the Dirichlet problem for the Laplace operator with lower terms and prove the unique solvability of this problem.

About the authors

Yu. A. Alkhutov

Vladimir State University named after Alexander and Nikolay Stoletovs

Author for correspondence.
Email: yurij-alkhutov@yandex.ru
Vladimir, Russia

G. A. Chechkin

Lomonosov Moscow State University; Institute of Mathematics with Computing Center, Ufa Federal Research Centre, Russian Academy of Sciences; Institute of Mathematics and Mathematical Modeling

Email: chechkin@mech.math.msu.su
Almaty, Kazakhstan

References

  1. Боярский Б. В. Обобщенные решения системы дифференциальных уравнений первого порядка эллиптического типа с разрывными коэффициентами// Мат. сб. - 1957. - 43, № 4. - С. 451-503
  2. Гилбарг Д., Трудингер Н. С. Эллиптические дифференциальные уравнения с частными производными второго порядка. - М.: Наука, 1989
  3. Ладыженская О. А., Уральцева Н. Н. Линейные и квазилинейные уравнения эллиптического типа. - М.: Наука, 1973
  4. Чечкин Г. А., Чечкина Т. П. Оценка Боярского-Мейерса для дивергентных эллиптических уравнений второго порядка. Два пространственных примера// Пробл. мат. анализа. - 2022. - 119. - С. 107-116
  5. Чечкина А. Г. О задаче Зарембы для p-эллиптического уравнения// Мат. сб. - 2023. - 214, № 9. - С. 144-160
  6. Acerbi E., Mingione G. Gradient estimates for the p(x)-Laplacian system// J. Reine Angew. Math. - 2005. - 584. - С. 117-148
  7. Alkhutov Yu. A., Chechkin G. A. Increased integrability of the gradient of the solution to the Zaremba problem for the Poisson equation// Dokl. Math. - 2021. - 103, № 2. - С. 69-71
  8. Alkhutov Yu. A., Chechkin G. A. The Meyer’s estimate of solutions to Zaremba problem for second-order elliptic equations in divergent form// C. R. M´ecanique. - 2021. - 349, № 2. - С. 299-304
  9. Alkhutov Yu. A., Chechkin G. A., Maz’ya V. G. On the Bojarski-Meyers estimate of a solution to the Zaremba problem// Arch. Ration. Mech. Anal. - 2022. - 245, № 2. - С. 1197-1211
  10. Chechkin G. A. The Meyers estimates for domains perforated along the boundary// Mathematics. - 2021. - 9, № 23. - 3015
  11. Cimatti G., Prodi G. Existence results for a nonlinear elliptic system modelling a temperature dependent electrical resistor// Ann. Mat. Pura Appl. - 1988. - 63. - С. 227-236
  12. Diening L., Schwarzsacher S. Global gradient estimates for the p(·)-Laplacian// Nonlinear Anal. - 2014. - 106. - С. 70-85
  13. Gehring F. W. The Lp-integrability of the partial derivatives of a quasiconformal mapping// Acta Math. - 1973. - 130. - С. 265-277
  14. Giaquinta M., Modica G. Regularity results for some classes of higher order nonlinear elliptic systems// J. Reine Angew. Math. - 1979. - 311/312. - С. 145-169
  15. Howison S. D., Rodriges J. F., Shillor M. Stationary solutions to the thermistor problem// J. Math. Anal. Appl. - 1993. - 174. - С. 573-588
  16. Lax P. D., Milgram A. Parabolic equations// В сб.: «Contributions to the Theory of Partial Differential Equations». - Princeton: Princeton Univ. Press, 1954. - С. 167-190
  17. Meyers N. G. An Lp-estimate for the gradient of solutions of second order elliptic divergence equations// Ann. Sc. Norm. Super. Pisa Cl. Sci. - 1963. - 17, № 3. - С. 189-206
  18. Skrypnik I. V. Methods for Analysis of Nonlinear Elliptic Boundary Value Problems. - Providence: AMS, 1994
  19. Zhikov V. V. On some variational problems// Russ. J. Math. Phys. - 1997. - 5, № 1. - С. 105-116

Copyright (c) 2024 Alkhutov Y.A., Chechkin G.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies