The development of scientific outlook of students when teaching inverse problems for differential equations

Cover Page

Abstract


Problem and goal. Modern achievements of the world Science of nature and the world, physical laws and laws should be disclosed at an accessible level to University students. Among the scientific methods of research of physical processes and phenomena, an important place is the method of mathematical modeling, because mathematical models have scientific and cognitive potential and versatility (see, for example, [2-4]). The use of mathematical models of inverse problems for differential equations (IPDE) allows to effectively investigate many processes and phenomena occurring in the air, earth and water environment. It is not surprising that in some Russian universities in the physical and mathematical areas of training are taught IPDE in the form of a choice of courses. The goals and objectives of such teaching are set, as a result of which students would develop creative mathematical abilities, formed fundamental knowledge in the field of physical education, developed a scientific worldview. Methodology. The development of scientific outlook of students of physical and mathematical directions of preparation, as a result of teaching IPDE, ensured the successful will be implemented in practice, such conditions as: 1. the involvement of experts in the field IPDE with teaching experience at the university; 2. development of the content of lectures and practical classes on the basis of modern achievements of the theory of inverse and incorrect problems, taking into account the professional orientation of training students; 3. the implementation of the principles, methods and means of education IPDE; 4. involvement of students in research work in scientific seminars and participation in scientific conferences devoted to IPDE; 5. implementation of methodological approaches that allow students to develop the skills and abilities of independent analysis of applied and humanitarian nature of the results of research of IPDE. Results. In practical classes on the IPDE students acquire the ability and skills to apply effective approaches and mathematical methods of finding solutions to inverse problems, followed by a logical analysis of their solutions. As a result, students gain useful experience in the analysis of new information about the studied physical processes and phenomena, form new scientific knowledge about the world on the basis of which develop a scientific worldview. Conclusion. Developed, in the process of teaching IPDE, the scientific outlook helps students to understand that mathematical models IPDE are relevant to theory, experiment and philosophy - the basic methods of knowledge researchers; to understand the humanitarian value of mathematical models IPDE.


Постановка проблемы. Одной из важных целей обучения студентов вузов физико-математических специальностей является развитие их научного мировоззрения. Это может быть достигнуто за счет успешной организации процесса обучения, при котором освоение учебной дисциплины организуется на основе мировоззренческих идей, систематизированных в результате реализации внутрипредметных и междисциплинарных связей. Поиск путей формирования научного мировоззрения, его значение в развитии человеческой цивилизации рассматривались в исследованиях Аристотеля, И.В. Вернадского, Гегеля, Декарта, Я.А. Коменского, Канта, Платона, М. Хайдеггера, К.Д. Ушинского и других ученых прошлых веков. Решение проблемы формирования научного мировоззрения находит свое развитие в современных исследованиях не только математиков и физиков, но и философов, педагогов, психологов и других ученых, среди них: Г.И. Баврин, Е.А. Болотова, Е.А. Веселова, Х.А. Гербеков, Г.Д. Глейзер, Б.В. Гнеденко, В.В. Давыдов, Г.В. Дорофеев, Л.Я. Зорина, Т.А. Иванова, Р.Л. Исаев, А.А. Касьян, К.К. Колин, А.Н. Колмогоров, В.А.Сластенин, А.А. Столяр, А.В. Усова, М.И. Шабунина и другие (см., например, [10-12; 14; 16; 17; 24; 26; 30]). По мнению Б.В. Гнеденко, мировоззрение представляет собой систему взглядов человека на окружающий мир, а также возможность познания человеком окружающего мира [10]. В.А. Сластенин считает научным мировоззрением научно-обоснованное суждение об окружающем мире с позиций философии, социологии, политики, нравственности, эстетики [30]. В своих работах, посвященных формированию и развитию научного мировоззрения, авторы акцентирую внимание на то, что научное мировоззрение - это обобщающая форма знаний об окружающем нас мире, которые проверены научными методами и подтверждены практикой человечества в целом. Научное мировоззрение у студентов может быть развито в процессе преподавания разных физико-математических учебных дисциплин. К таким дисциплинам относятся и обратные задачи для дифференциальных уравнений (ОЗДУ) (см., например, [6; 9; 13; 15; 19-23; 28; 29; 31; 33]). Содержание лекционных и практических занятий по ОЗДУ разрабатывается с учетом новейших достижений в исследовании обратных и некорректных задач. Стремительное развитие теории ОЗДУ приходится на середину 60-х гг. прошлого века. На это обстоятельство повлияло разработанное в 1943 г. А.Н. Тихоновым физически оправданное понятие корректности математической задачи [32] и разработанное в 1956 г. М.М. Лаврентьевым определение условной корректности математической задачи, существенно использующее дополнительную информацию о свойствах решения математической задачи [25]. С помощью теории ОЗДУ возможно проводить исследования разнообразных труднодоступных, а также недоступных процессов или явлений разнообразной природы, выявлять местоположения объектов, их форм и структур включений, определять причины и следствия их связи (см., например, [1; 5; 7-9; 13; 15; 18; 27-29; 31; 33]). Несомненно, особый вклад в эффективность и мобильность исследования математических моделей ОЗДУ вносят современные компьютерные технологии, которые в настоящее время стремительно развиваются. Необходимость подготовки специалистов в области ОЗДУ способствовала тому, что в некоторых высших учебных заведениях России в настоящее время преподаются курсы по выбору, посвященные обратным и некорректным задачам, проводимые специалистами в данной области. Методы исследования. При формировании содержания обучения ОЗДУ учитывается профессиональная направленность подготовки студентов. На практических занятиях студенты формируют умения и навыки исследования и анализа разнообразных прикладных задач с помощью математических моделей ОЗДУ, приобретая при этом различные научные знания об окружающем мире, существующих причинно-следственных связях происходящих физических процессов и явлений. Изложим для наглядности несколько примеров. Осуществляя поиск решения, например, обратных задач электродинамики при помощи методов математической физики (требуется доказать теоремы существования, единственности и устойчивости решения ОЗДУ), студенты приобретают новые научные знания в области электродинамики, электромагнитных излучений, неоднородной структуры земной среды, об источниках электромагнитных полей и др. При исследовании обратных задач студенты могут получить научные знания и в некоторых предметных областях. Исследуя, например, обратные спектральные задачи, студенты выясняют, что математические модели обратных спектральных задач могут успешно применяться в физике, геофизике, радиоэлектронике, квантовой механике и других областях. Кроме того, студенты знакомятся с математическими методами спектральных отображений, оператора преобразования, эталонных моделей и прочими математическими методами спектрального анализа. Анализ математических моделей, алгоритмизация, гуманитаризация распространение идей оптимальности являются характерными чертами современной прикладной математики. Это важно иметь в виду в процессе преподавания ОЗДУ - реализовывая междисциплинарные связи целесообразно интегрировать естественно-научные и гуманитарные знания. Такие условия могут позволить студентам формировать научные предметные знания по ОЗДУ, осмысливать их научно-познавательный и гуманитарный потенциал, осознавать роль прикладной математики в развитии человеческой цивилизации. В процессе обучения ОЗДУ студентам целесообразно объяснять, что обратные задачи с точки зрения философских категорий - это задачи выявления по известным следствиям неизвестных причин. В качестве неизвестных причин могут выступать, например, коэффициенты дифференциальных уравнений, начальные или граничные условия. Следствиями могут быть некоторые функционалы от решения математической модели обратной задачи. Кроме того, студентам целесообразно пояснять, что ОЗДУ обладают существенным научно-познавательным потенциалом. Результаты и обсуждение. На практических занятиях, исследуя методами математической физики вопросы корректности ОЗДУ, студенты осваивают глубокие научные знания не только в области теории ОЗДУ, но и области прикладной и вычислительной математики. Проводя прикладной, гуманитарный и философский анализ полученного решения ОЗДУ, выявленных причинно-следственных связей студенты приобретают научные знания об окружающем мире, ранее им не известные. Приведем пример. Исследуя на практических занятиях математическую модель обратной задачи для системы уравнений Максвелла, студенты осознают, что в качестве причин здесь могут быть, например, коэффициенты диэлектрической проницаемости, магнитной проницаемости или коэффициент электропроводимости, а в качестве следствий - дополнительная информация о решении соответствующей прямой задачи. Учитывая такие знания, студенты эффективно применяют математические методы нахождения решения такой постановки обратной задачи. И в дальнейшем в результате глубокого анализа полученного решения ОЗДУ студенты приобретают сведения о том, что представляет собой неоднородная структура земной среды, какими свойствами она обладает и др. Реализация междисциплинарных научных связей при обучении ОЗДУ позволяет студентам сформировать глубокие предметные теоретические знания, наработать умения и навыки, выбирать пути эффективного исследования методами математической физики, математических моделей обратных задач, приобретать опыт прикладного, гуманитарного и философского анализа их решений. Наличие у студентов фундаментальных предметных знаний, умений, навыков и опыта вникнуть в суть исследуемых физических процессов и явлений посредством их исследования методами ОЗДУ наглядно демонстрирует их математические творческие способности. Способность к математическому творчеству позволяет студентам приобретать новые научные знания не только в области обратных и некорректных задач, по прикладной математике, вычислительной математике, но и, например, по философии, в частности осваивая фундаментальные понятия - причину и следствие. Анализ причинно-следственных связей с точки зрения философии помогает студентам освоить методологические возможности в постижении окружающего мира, осознать, что новая информация об исследуемых физических процессах и явлениях, полученная посредством решения ОЗДУ, связана, в том числе, и с фундаментальными философскими вопросами естествознания. При обучении ОЗДУ до студентов доводятся сведения о том, что математические модели ОЗДУ являются универсальными и могут описывать многие физические процессы и явления, происходящие в водной и земной средах, воздушном пространстве. В этом студенты наглядно убеждаются при исследовании разнообразных моделей ОЗДУ, с помощью которых могут быть изучены разнообразные физические процессы и явления. Студенты в процессе исследования математических моделей ОЗДУ нарабатывают умения и навыки применять принципы организации теоретических и практических исследований ОЗДУ. Отметим некоторые из них. 1. Принцип междисциплинарного подхода. Должна быть междисциплинарность описания целостных процессов и явлений на основе научных знаний из различных предметных областей. 2. Принцип структурного, функционального и динамического единства. Описание законов объектов, их функционирования и развития осуществляется в единстве и многообразии. 3. Принцип многоуровневости. Исследование процессов или явлений необходимо проводить не только в определенной целостности, но и в образовании, которое включено в более сложную систему. 4. Принцип причинно-следственных связей. Всестороннее изучение причинноследственных связей, определяющих направление причинно-следственного хода событий и явлений. Заключение. Фундаментальные знания студентов в области ОЗДУ, их умения и навыки самостоятельного исследования математических моделей ОЗДУ способствуют развитию их научного мировоззрения. Наличие научного мировоззрения помогает студентам осознать, что математические модели ОЗДУ играют важную роль в исследованиях многих прикладных задач, решение которых позволяет развивать не только методы мировой науки, но и решать важные проблемы в промышленности, экономике, сельском хозяйстве и во многих других сферах человеческой деятельности. Очевидно, что студент, обладающий научным мировоззрением, в своей будущей профессиональной деятельности в качестве математика-исследователя способен самостоятельно успешно решать сложные прикладные задачи из разных предметных областей.

Viktor Semenovich Kornilov

Moscow city pedagogical university

Author for correspondence.
Email: vs_kornilov@mail.ru
29 Sheremetyevskaya St., Moscow, 127521, Russian Federation

doctor of pedagogical sciences, candidate of physical and mathematical sciences, full professor, deputy head of the department of informatization of education

  • Agranovich Z.S., Marchenko V.A. Obratnaya zadacha teorii rasseyaniya [Inverse problem of scattering theory]. Har’kov: Har’kovskii universitet Publ., 1960. 268 p.
  • Amelkin V.V. Differencial’nye uravneniya v prilozheniyah [Differential equations in applications]. M.: Nauka, 1987. 158 p.
  • Aramanovich I.G., Levin V.I. Uravneniya matematicheskoj fiziki [Equations of mathematical physics]. M.: Nauka, 1969. 286 p.
  • Ashihmin V.N. Vvedenie v matematicheskoe modelirovanie [Introduction to mathematical modeling]: uchebnoe posobie. M.: Logos, 2015. 440 p.
  • Belishev M.I., Blagoveshchenskiy A.S. Dinamicheskie obratnye zadachi teorii voln [Dynamic inverse problems of wave theory]. SPb.: SPbGU, 1999. 266 p.
  • Bidaibekov E.S., Kornilov V.S., Kamalova G.B. Obuchenie budushhih uchitelej matematiki i informatiki obratnym zadacham dlja differencial’nyh uravnenij [The training of future teachers of mathematics and informatics inverse problems for differential equations]. Vestnik Moskovskogo gorodskogo pedagogicheskogo universiteta. Serija: Informatika i informatizacija obrazovanija [Bulletin of the Moscow City Pedagogical University. Series: Informatics and Informatization of Education]. 2014. No. 3(29). Pp. 57—69.
  • Bolibruh A.A. Obratnye zadachi monodromii v analiticheskoj teorii differencial’nyh uravnenij [Inverse problems of monodromy in the analytic theory of differential equations]: lekcii. M.: MCNMO, 2009. 221 p.
  • Buhgejm A.L. Vvedenie v teoriju obratnyh zadach [Introduction to the theory of inverse problems]: monografiya. Novosibirsk: Nauka, Sibirskoe otdelenie, 1988. 181 p.
  • Vatulyan A.O., Belyak O.A., Sukhov D.Yu., Yavruyan O.V. Obratnye i nekorrektnye zadachi [Inverse and incorrect tasks]: ucheb. posobie. Rostov-na-Donu: Juzhnyi federal’nyi universitet, 2011. 232 p.
  • Veselova E.A. Formirovanie nauchnogo mirovozzreniya studentov v obrazovatel’no-vospitatel’nom processe vysshej shkoly [Formation of scientific outlook of students in the educational process of higher education]: dis.. kand. ped. nauk. Nizhnij Novgorod, 2008. 255 p.
  • Gnedenko B.V. Matematika i zhizn’ [Mathematics and life]. M.: Komkniga, 2006. 125 p.
  • Grigoryan M.E. Formirovanie nauchnogo mirovozzreniya studentov sredstvami istorii matematiki v processe obucheniya teorii veroyatnostej [Formation of scientific outlook of students by means of history of mathematics in the process of teaching probability theory]. Sociosfera [Sociosphere]. 2014. No. 3. Pp. 87—89.
  • Denisov A.M. Vvedenie v teoriyu obratnyh zadach [Introduction to the theory of inverse problems]: uchebnoe posobie. M.: Moskovskii universitet, 1994. 207 p.
  • Ivanova T.A. Gumanitarizaciya matematicheskogo obrazovaniya [Humanitarization of mathematical education]: monografiya. Nizhnij Novgorod: NGPU, 1998. 206 p.
  • Kabanikhin S.I. Obratnye i nekorrektnye zadachi [Inverse and incorrect problems]: uchebnoe posobie. Novosibirsk: Siberian scientific publishing house, 2009. 458 p.
  • Kasyan A.A. Kontekst obrazovaniya: nauka i mirovozzrenie [Context of education: science and world outlook]: monografiya. Nizhnij Novgorod: NGPU, 1996. 184 p.
  • Kolmogorov A.N. Matematika — nauka i professiya [Mathematics is a science and a profession]. M.: Nauka, 1988. 288 p.
  • Kornilov V.S. O mezhdisciplinarnom haraktere issledovanij prichinno-sledstvennyh obratnyh zadach [About cross-disciplinary character of researches of cause and effect inverse problems]. Vestnik Moskovskogo gorodskogo pedagogicheskogo universiteta. Serija: Informatika i informatizacija obrazovanija [Bulletin of the Moscow City Pedagogical University. Series: Informatics and Informatization of Education]. 2004. No. 1(2). Pp. 80—83.
  • Kornilov V.S. Obratnye zadachi v soderzhanii obucheniya prikladnoj matematike [Inverse problems in the content of teaching applied mathematics]. Vestnik Rossijskogo universiteta druzhby narodov. Serija: Informatizacija obrazovanija [Bulletin of Peoples’ Friendship University of Russia. Series: Education Informatization]. 2014. No. 2. Pp. 109—118.
  • Kornilov V.S. Realizacija nauchno-obrazovatel’nogo potenciala obuchenija studentov vuzov obratnym zadacham dlja differencial’nyh uravnenij [Realization of scientific and educational potential of training of students of higher education institutions in the inverse problems for the differential equations]. Kazanskij pedagogicheskij zhurnal [Kazan pedagogical journal]. 2016. No. 6. Pp. 55—59.
  • Kornilov V.S. Teorija i metodika obuchenija obratnym zadacham dlja differencial’nyh uravnenij [Theory and technique of training to the inverse problems for differential equations]: monografija. M.: OntoPrint Publ., 2017. 500 p.
  • Kornilov V.S. Formirovanie fundamental’nyh znanij po matematicheskomu modelirovaniyu pri obuchenii obratnym zadacham dlya differencial’nyh uravnenij [Formation of the fundamental knowledge on mathematical modeling in teaching inverse problems for differential equations]. Vestnik Moskovskogo gorodskogo pedagogicheskogo universiteta. Serija: Informatika i informatizacija obrazovanija [Bulletin of the Moscow City Pedagogical University. Series: Informatics and Informatization of Education]. 2017. No. 1(39). Pp. 92—99.
  • Kornilov V.S. Formirovanie u studentov mezhdisciplinarnyh nauchnyh znanij pri obuchenii obratnym zadacham dlya differencial’nyh uravnenij [Formation of students’ interdisciplinary scientific knowledge in teaching inverse problems for differential equations]. Vestnik Kazahskogo nacional’nogo pedagogicheskogo universiteta imeni Abaya. Seriya: Fiziko-matematicheskie nauki [Bulletin of Kazakh National Pedagogical University named after Abay. Series: Physics and mathematical Sciences]. 2018. No. 4(64). Pp. 46—50.
  • Kuvakin V.A. Nauchnoe mirovozzrenie i gumanizm [Scientific worldview and human]. Zdravyj smysl [Common sense]. 2007. No. 2. Pp. 31—36.
  • Lavrentiev M.M. O zadache Koshi dlya uravneniya Laplasa [On the Cauchy problem for the Laplace equation]. Izvestiya AN SSSR [Proceedings of the USSR Academy of Sciences]. 1956. Vol. 20. No. 6. Pp. 819—842.
  • Levchenko I.V., Kornilov V.S., Belikov V.V. Rol’ informatiki v podgotovke specialistov po prikladnoj matematike [The role of informatics in the training of specialists in applied mathematics]. Vestnik Moskovskogo gorodskogo pedagogicheskogo universiteta. Serija: Informatika i informatizacija obrazovanija [Bulletin of the Moscow City Pedagogical University. Series: Informatics and Informatization of Education]. 2009. No. 2(18). Pp. 108—112.

Views

Abstract - 128

PDF (Russian) - 127

PlumX


Copyright (c) 2019 Kornilov V.S.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.