РАЗВИТИЕ МАТЕМАТИЧЕСКОЙ ИНТУИЦИИ СТУДЕНТОВ ПРИ ОБУЧЕНИИ ОБРАТНЫМ ЗАДАЧАМ ДЛЯ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

Обложка

Аннотация


В статье обращается внимание на тот факт, что у студентов высших учебных заведений физико-математических и естественно-научных направлений подготовки при обучении обратным задачам для дифференциальных уравнений развивается математическая интуиция, являющаяся важной компонентой их творческого потенциала. Математическая интуиция помогает студентам осознать физический смысл исследуемой прикладной задачи, выбрать эффективные методы математической физики для решения обратной задачи для дифференциальных уравнений. Математическая интуиция развивается у студентов при решении различных нетипичных математических задач, которыми являются обратные задачи для дифференциальных уравнений. Среди таких учебных заданий - построение системы интегральных уравнений обратной задачи для дифференциальных уравнений, доказательство условной корректности решения обратной задачи для дифференциальных уравнений, построение разностного аналога обратной задачи для дифференциального уравнения; нахождение численного решения обратной задачи, доказательство сходимости приближенного решения обратной задачи к точному решению, обоснование идеи доказательства корректности (условной корректности) решения обратной задачи для дифференциальных уравнений, формулировка логических выводов прикладного или гуманитарного характера на основе проведенного исследования обратной задачи и другие учебные задания. В процессе такого обучения у студентов формируется система фундаментальных знаний в области обратных и некорректных задач, они приобретают новые научные знания в области прикладной и вычислительной математики, развивают математическую интуицию.


Виктор Семенович Корнилов

Лицо (автор) для связи с редакцией.
vs_kornilov@mail.ru
Московский городской педагогический университет Шереметьевская ул., 29, Москва, Россия, 127521

доктор педагогических наук, кандидат физико-математических наук, профессор, заместитель заведующего кафедрой информатизации образования

  • Ватульян А.О., Беляк О.А., Сухов Д.Ю., Явруян О.В. Обратные и некорректные задачи: учеб. пособие. Ростов-на-Дону: Изд-во Южного федерального университета, 2011. 232 с.
  • Денисов А.М. Введение в теорию обратных задач: учеб. пособие. М.: Изд-во МГУ им. М.В. Ломоносова, 1994. 207 с.
  • Кабанихин С.И. Обратные и некорректные задачи: учебное пособие. Новосибирск: Сибирское научное издательство, 2009. 458 c.
  • Кабанихин С.И., Бидайбеков Е.Ы., Корнилов В.С., Шолпанбаев Б.Б., Акимжан Н.Ш. Корректные и некорректные задачи для СЛАУ: анализ и методика преподавания // Сибирские электронные математические известия. URL: http://semr.math.nсs.ru ISSN 1813-3304. УДК 519.62. MSC 65M32. 2015. Т. 12. С. 255-263.
  • Корнилов В.С. Некоторые обратные задачи для волновых уравнений: монография. Новосибирск: СибУПК, 2000. 252 с.
  • Корнилов В.С. О междисциплинарном характере исследований причинно-следственных обратных задач // Вестник Московского городского педагогического университета. Серия: Информатика и информатизация образования. 2004. № 1 (2). С. 80-83.
  • Корнилов В.С. Некоторые обратные задачи идентификации параметров математических моделей: учеб. пособие. М.: МГПУ, 2005. 359 с.
  • Корнилов В.С. Обучение обратным задачам для дифференциальных уравнений как фактор гуманитаризации математического образования: монография. М.: МГПУ, 2006. 320 с.
  • Корнилов В.С. Вузовская подготовка специалистов по прикладной математике - история и современность // Наука и школа. 2006. № 4. С. 10-12.
  • Корнилов В.С. Реализация дидактических принципов обучения при использовании образовательных электронных ресурсов в курсе «Обратные задачи для дифференциальных уравнений» // Вестник Российского университета дружбы народов. Серия: Информатизация образования. 2006. № 1 (3). С. 40-44.
  • Корнилов В.С. Гуманитарные аспекты вузовской системы прикладной математической подготовки // Наука и школа. 2007. № 5. С. 23-28.
  • Корнилов В.С. Гуманитарный анализ математических моделей обратных задач // Известия Курского государственного технического университета. Курск: КГТУ, 2008. № 3 (24). С. 60-65.
  • Корнилов В.С. Формирование фундаментальных знаний будущих учителей информатики и математики по функциональному анализу при обучении обратным задачам математической физики // Вестник Московского городского педагогического университета. Серия: Информатика и информатизация образования. 2015. № 3 (33). С. 72-82.
  • Корнилов В.С. Обучение студентов обратным задачам математической физики как фактор формирования фундаментальных знаний по интегральным уравнениям // Бюллетень лаборатории математического, естественнонаучного образования и информатизации. Рецензируемый сборник научных трудов. Самара: Самарский филиал МГПУ, 2015. Т. VI. С. 251-257.
  • Корнилов В.С. Базовые понятия информатики в содержании обучения обратным задачам для дифференциальных уравнений // Вестник Российского университета дружбы народов. Серия: Информатизация образования. 2016. № 1. С. 70-84.
  • Корнилов В.С. Реализация методов вычислительной математики при обучении студентов обратным задачам для дифференциальных уравнений // Вестник Московского городского педагогического университета. Серия «Информатика и информатизация образования». 2016. № 2 (36). С. 91-100.
  • Корнилов В.С. Формирование фундаментальных знаний студентов в области методов математической физики при обучении обратным задачам для дифференциальных уравнений // Вестник Российского университета дружбы народов. Серия: Информатизация образования. 2016. № 2. С. 83-94.
  • Корнилов В.С. Реализация научно-образовательного потенциала обучения студентов вузов обратным задачам для дифференциальных уравнений // Казанский педагогический журнал. 2016. № 6. С. 55-59.
  • Корнилов В.С. Развитие творческих способностей студентов при обучении обратным задачам для дифференциальных уравнений // Альманах мировой науки. 2016. № 10-2 (13). С. 33-34.
  • Романов В.Г. Обратные задачи математической физики: монография. М.: Наука, 1984. 264 с.
  • Самарский А.А., Вабишевич П.Н. Численные методы решения обратных задач математической физики: монография. М.: УРСС, 2004. 478 c.
  • Сизиков В.С. Обратные прикладные задачи и MatLab: учебное пособие. СПб.: Лань, 2011. 251 с.
  • Bidaibekov E.Y., Kornilov V.S., Saparbekova G.A. Implementation of Humanitarian Components of Applied Mathematics Teaching for University Students with a Specialization in Science // Indian Journal of Science and Technology. August 2016. Vol. 9 (29), doi: 10.17485/ijst/2016/. v9i29/88842

Просмотры

Аннотация - 181

PDF (Russian) - 78


© Корнилов В.С., 2017

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.