Contemporary Research on Attention Facilitation Effect within the Dynamic Attending Theory: Issues and Perspectives


Cite item

Abstract

The results of recent international studies within The Dynamic Attention Theory (DAT) have opened up great prospects for the development of therapeutic methods that use temporal patterns of rhythmic stimulation to model the attention facilitation effect (AFE) in cognitive and specialized language tasks. However, research within the DAT is developing in local directions and still remains less noticeable to a wide range of researchers. In particular, no systematic review and meta-analysis of behavioral and psychophysiological studies of AFE within the DAT have been conducted. This review examined the DAT, namely, its specificity, provisions, mechanisms of attention selectivity, and main research paradigms. We reviewed current research on AFE within the DAT. Studies within the correlational approach, as well as studies of AFE in rhythmic impact paradigms, were considered. Within the latter, we identified two blocks: general cognitive functions and language processes. In the first block, we examined studies of AFE on perception, as well as on perception and memory together, and in the second block, AFE on syntax and phonology. It was found that most studies focus on children and young adults, which limits the possibility of generalizing the results to other age groups. In addition, studies within the syntactic direction have shown contradictory data regarding the syntactic and modal specificity of AFE, and have also focused only on the study of the auditory modality of AFE. The review also showed the limitations of research in constructing an experimental paradigm, which is manifested in the choice of only one mechanism of attention selectivity described in the dynamic attention theory. Thus, this work emphasizes the need for further research to gain a deeper understanding of AFE, as well as to expand the age groups and modalities included in the studies.

About the authors

Maksim O. Markevich

Sirius University of Science and Technology

Author for correspondence.
Email: markevichmaksim92@gmail.com
ORCID iD: 0009-0006-4137-0552

Postgraduate Student, Junior Researcher, Scientific Center for Cognitive Research

1 Olympiysky Ave., Sirius urban-type settlement, Federal Territory “Sirius”, Krasnodar Territory, 354340, Russian Federation

Olga V. Sysoeva

Sirius University of Science and Technology; Institute of Higher Nervous Activity and Neurophysiology of RAS; Higher School of Economics

Email: olga.v.sysoeva@gmail.com
ORCID iD: 0000-0002-4005-9512
SPIN-code: 2139-6619

PhD in Psychology, Head of the Laboratory of Neurobiology of Typical and Atypical Development, Scientific Center for Cognitive Research, Sirius University of Science and Technology ; Leading Researcher, Laboratory of Human Higher Nervous Activity, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences

1 Olympiysky Ave., Sirius urban-type settlement, Federal Territory “Sirius”, Krasnodar Territory, 354340, Russian Federation; 5A Butlerova St., Moscow, 101000, Russian Federation; 20 Myasnitskaya St., Moscow, 101000, Russian Federation

References

  1. Buzsáki, G. (2019). The Brain from Inside Out (1st ed.). Oxford: Oxford University Press. https://doi.org/10.1093/oso/9780190905385.001.0001
  2. Buzsáki, G., & Draguhn, A. (2004). Neuronal oscillations in cortical networks. Science (New York, N.Y.), 304(5679), 1926-1929. https://doi.org/10.1126/science.1099745
  3. Canette, L.-H., Bedoin, N., Lalitte, P., Bigand, E., & Tillmann, B. (2019). The Regularity of Rhythmic Primes Influences Syntax Processing in Adults. Auditory Perception & Cognition, 2(3), 163-179. https://doi.org/10.1080/25742442.2020.1752080
  4. Canette, L.-H., Fiveash, A., Krzonowski, J., Corneyllie, A., Lalitte, P., Thompson, D., Trainor, L., Bedoin, N., & Tillmann, B. (2020). Regular rhythmic primes boost P600 in grammatical error processing in dyslexic adults and matched controls. Neuropsychologia, 138, 107324. https://doi.org/10.1016/j.neuropsychologia.2019.107324
  5. Canette, L.-H., Lalitte, P., Bedoin, N., Pineau, M., Bigand, E., & Tillmann, B. (2020). Rhythmic and textural musical sequences differently influence syntax and semantic processing in children. Journal of Experimental Child Psychology, 191, 104711. https://doi.org/10.1016/j.jecp.2019.104711
  6. Cason, N., Astésano, C., & Schön, D. (2015). Bridging music and speech rhythm: Rhythmic priming and audio-motor training affect speech perception. Acta Psychologica, 155, 43-50. https://doi.org/10.1016/j.actpsy.2014.12.002
  7. Cason, N., & Schön, D. (2012). Rhythmic priming enhances the phonological processing of speech. Neuropsychologia, 50(11), 2652-2658. https://doi.org/10.1016/j.neuropsychologia.2012.07.018
  8. Chern, A., Tillmann, B., Vaughan, C., & Gordon, R. L. (2018). New evidence of a rhythmic priming effect that enhances grammaticality judgments in children. Journal of Experimental Child Psychology, 173, 371-379. https://doi.org/10.1016/j.jecp.2018.04.007
  9. Degé, F. (2021). Music lessons and cognitive abilities in children: How far transfer could be possible. Frontiers in Psychology, 11, 557807. https://doi.org/10.3389/fpsyg.2020.557807
  10. Denison, R. N. (2024). Visual temporal attention from perception to computation. Nature Reviews Psychology, 3, 261-274. https://doi.org/10.1038/s44159-024-00294-0
  11. Elbaz, A., & Yeshurun, Y. (2020). Can rhythm-induced attention improve the perceptual representation? Public Library of Science ONE, 15(4), e0231200. https://doi.org/10.1371/journal.pone.0231200
  12. Falk, S., Lanzilotti, C., & Schön, D. (2017). Tuning neural phase entrainment to speech. Journal of Cognitive Neuroscience, 29(8), 1378-1389. https://doi.org/10.1162/jocn_a_01136
  13. Fiveash, A., Bedoin, N., Gordon, R. L., & Tillmann, B. (2021). Processing rhythm in speech and music: Shared mechanisms and implications for developmental speech and language disorders. Neuropsychology, 35(8), 771-791. https://doi.org/10.1037/neu0000766
  14. Fiveash, A., Bedoin, N., Lalitte, P., & Tillmann, B. (2020). Rhythmic priming of grammaticality judgments in children: Duration matters. Journal of Experimental Child Psychology, 197, 104885. https://doi.org/10.1016/j.jecp.2020.104885
  15. Fiveash, A., Burger, B., Canette, L.-H., Bedoin, N., & Tillmann, B. (2022). When visual cues do not help the beat: evidence for a detrimental effect of moving point-light figures on rhythmic priming. Frontiers in Psychology, 13, 807987. https://doi.org/10.3389/fpsyg.2022.807987
  16. Fiveash, A., Ferreri, L., Bouwer, F. L., Kösem, A., Moghimi, S., Ravignani, A., Keller, P. E., & Tillmann, B. (2023). Can rhythm-mediated reward boost learning, memory, and social connection? Perspectives for future research. Neuroscience & Biobehavioral Reviews, 149, 105153. https://doi.org/10.1016/j.neubiorev.2023.105153
  17. Fiveash, A., Ladányi, E., Camici, J., Chidiac, K., Bush, C. T., Canette, L.-H., Bedoin, N., Gordon, R. L., & Tillmann, B. (2023). Regular rhythmic primes improve sentence repetition in children with developmental language disorder. Npj Science of Learning, 8(1), 1-8. https://doi.org/10.1038/s41539-023-00170-1
  18. Fiveash, A., Schön, D., Canette, L.-H., Morillon, B., Bedoin, N., & Tillmann, B. (2020). A stimulus-brain coupling analysis of regular and irregular rhythms in adults with dyslexia and controls. Brain and Cognition, 140, 105531. https://doi.org/10.1016/j.bandc.2020.105531
  19. Fotidzis, T., Moon, H., Steele, J., & Magne, C. (2018). Cross-Modal Priming Effect of Rhythm on Visual Word Recognition and Its Relationships to Music Aptitude and Reading Achievement. Brain Sciences, 8(12), 210. https://doi.org/10.3390/brainsci8120210
  20. Frischen, U., Degé, F., & Schwarzer, G. (2022). The relation between rhythm processing and cognitive abilities during child development: The role of prediction. Frontiers in Psychology, 13, 920513. https://doi.org/10.3389/fpsyg.2022.920513
  21. Goswami, U. (2018). A Neural Basis for Phonological Awareness? An Oscillatory “Temporal Sampling” Perspective. https://doi.org/10.17863/CAM.11061
  22. Haegens, S., & Zion Golumbic, E. (2018). Rhythmic facilitation of sensory processing: A critical review. Neuroscience and Biobehavioral Reviews, 86, 150-165. https://doi.org/10.1016/j.neubiorev.2017.12.002
  23. Henry, M. J., & Herrmann, B. (2014). Low-Frequency Neural Oscillations Support Dynamic Attending in Temporal Context. Timing & Time Perception, 2(1), 62-86. https://doi.org/10.1163/22134468-00002011
  24. Henry, M. J., Herrmann, B., & Grahn, J. A. (2017). What can we learn about beat perception by comparing brain signals and stimulus envelopes? Public Library of Science ONE, 12(2), e0172454. https://doi.org/10.1371/journal.pone.0172454
  25. Hickey, P., Barnett-Young, A., Patel, A. D., & Race, E. (2020). Environmental rhythms orchestrate neural activity at multiple stages of processing during memory encoding: Evidence from event-related potentials. Public Library of Science ONE, 15(11), e0234668. https://doi.org/10.1371/journal.pone.0234668
  26. Hickey, P., Merseal, H., Patel, A. D., & Race, E. (2020). Memory in time: Neural tracking of low-frequency rhythm dynamically modulates memory formation. NeuroImage, 213, 116693. https://doi.org/10.1016/j.neuroimage.2020.116693
  27. Hilton, C. B., & Goldwater, M. B. (2021). Linguistic syncopation: Meter-syntax alignment affects sentence comprehension and sensorimotor synchronization. Cognition, 217, 104880. https://doi.org/10.1016/j.cognition.2021.104880
  28. Johndro, H., Jacobs, L., Patel, A. D., & Race, E. (2019). Temporal predictions provided by musical rhythm influence visual memory encoding. Acta Psychologica, 200, 102923. https://doi.org/10.1016/j.actpsy.2019.102923
  29. Jones, A., Silas, J., Anderson, W., & Ward, E. V. (2023). Null effects of temporal prediction on recognition memory but evidence for differential neural activity at encoding. A registered report. Cortex, 169, 130-145. https://doi.org/10.1016/j.cortex.2023.09.006
  30. Jones, A., & Ward, E. V. (2019). Rhythmic Temporal Structure at Encoding Enhances Recognition Memory. Journal of Cognitive Neuroscience, 31(10), 1549-1562. https://doi.org/10.1162/jocn_a_01431
  31. Jones, M. R. (1976). Time, our lost dimension: Toward a new theory of perception, attention, and memory. Psychological Review, 83(5), 323-355. https://doi.org/10.1037/0033-295X.83.5.323
  32. Jones, M. R. (2019). Time Will Tell: A Theory of Dynamic Attending (1st ed.). Oxford: Oxford University Press. https://doi.org/10.1093/oso/9780190618216.001.0001
  33. Kim, H.-W., Kovar, J., Bajwa, J. S., Mian, Y., Ahmad, A., Mancilla Moreno, M., Price, T. J., & Lee, Y. S. (2024). Rhythmic motor behavior explains individual differences in grammar skills in adults. Scientific Reports, 14(1), 3710. https://doi.org/10.1038/s41598-024-53382-9
  34. Kim, H.-W., McLaren, K. E., & Lee, Y. S. (2024). No influence of regular rhythmic priming on grammaticality judgment and sentence comprehension in English-speaking children. Journal of Experimental Child Psychology, 237, 105760. https://doi.org/10.1016/j.jecp.2023.105760
  35. Kotz, S. A., Frisch, S., von Cramon, D. Y., & Friederici, A. D. (2003). Syntactic language processing: ERP lesion data on the role of the basal ganglia. Journal of the International Neuropsychological Society: JINS, 9(7), 1053-1060. https://doi.org/10.1017/S1355617703970093
  36. Kotz, S. A., Gunter, T. C., & Wonneberger, S. (2005). The basal ganglia are receptive to rhythmic compensation during auditory syntactic processing: ERP patient data. Brain and Language, 95(1), 70-71. https://doi.org/10.1016/j.bandl.2005.07.039
  37. Kreidler, K., Vuolo, J., & Goffman, L. (2023). Children with developmental language disorder show deficits in the production of musical rhythmic groupings. Journal of Speech, Language, and Hearing Research, 66(11), 4481-4496. https://doi.org/10.1044/2023_JSLHR-23-00197
  38. Ladányi, E., Lukács, Á., & Gervain, J. (2021). Does rhythmic priming improve grammatical processing in Hungarian-speaking children with and without developmental language disorder? Developmental Science, 24(6), e13112. https://doi.org/10.1111/desc.13112
  39. Lê, M., Quémart, P., Potocki, A., Gimenes, M., Chesnet, D., & Lambert, E. (2020). Rhythm in the blood: The influence of rhythm skills on literacy development in third graders. Journal of Experimental Child Psychology, 198, 104880. https://doi.org/10.1016/j.jecp.2020.104880
  40. Notbohm, A., Kurths, J., & Herrmann, C. S. (2016). Modification of Brain Oscillations via Rhythmic Light Stimulation Provides Evidence for Entrainment but Not for Superposition of Event-Related Responses. Frontiers in Human Neuroscience, 10, 00010. https://doi.org/10.3389/fnhum.2016.00010
  41. Press, C., Kok, P., & Yon, D. (2020). The Perceptual Prediction Paradox. Trends in Cognitive Sciences, 24(1), 13-24. https://doi.org/10.1016/j.tics.2019.11.003
  42. Przybylski, L., Bedoin, N., Krifi-Papoz, S., Herbillon, V., Roch, D., Léculier, L., Kotz, S. A., & Tillmann, B. (2013). Rhythmic auditory stimulation influences syntactic processing in children with developmental language disorders. Neuropsychology, 27(1), 121-131. https://doi.org/10.1037/a0031277
  43. Seibold, V. C., Balke, J., & Rolke, B. (2023). Temporal attention. Frontiers in Cognition, 2, 1168320. https://doi.org/10.3389/fcogn.2023.1168320
  44. Sousa, J., Martins, M., Torres, N., Castro, S. L., & Silva, S. (2022). Rhythm but not melody processing helps reading via phonological awareness and phonological memory. Scientific Reports, 12(1), 13224. https://doi.org/10.1038/s41598-022-15596-7
  45. Spiridonov, V. F., & Falikman, M. V. (2011). Cognitive Psychology: History and Modernity. Moscow: Lomonosov Publ.
  46. Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology, 12(1), 97-136. https://doi.org/10.1016/0010-0285(80)90005-5
  47. Wilsch, A., Mercier, M. R., Obleser, J., Schroeder, C. E., & Haegens, S. (2020). Spatial attention and temporal expectation exert differential effects on visual and auditory discrimination. Journal of Cognitive Neuroscience, 32(8), 1562-1576. https://doi.org/10.1162/jocn_a_01567
  48. Xu, M., Meng, J., Yu, H., Jung, T.-P., & Ming, D. (2021). Dynamic brain responses modulated by precise timing prediction in an opposing process. Neuroscience Bulletin, 37(1), 70-80. https://doi.org/10.1007/s12264-020-00527-1
  49. Yu, W., Chien, Y.-F., Wang, B., Zhao, J., & Li, W. (2024). The effects of word and beat priming on Mandarin lexical stress recognition: an event-related potential study. Language and Cognition, 1-23. https://doi.org/10.1017/langcog.2023.75
  50. Yuan, P., Hu, R., Zhang, X., Wang, Y., & Jiang, Y. (2021). Cortical entrainment to hierarchical contextual rhythms recomposes dynamic attending in visual perception. ELife, 10, e65118. https://doi.org/10.7554/eLife.65118
  51. Zoefel, B. (2018). Speech Entrainment: Rhythmic Predictions Carried by Neural Oscillations. Current Biology: CB, 28(18), R1102-R1104. https://doi.org/10.1016/j.cub.2018.07.048

Copyright (c) 2024 Markevich M.O., Sysoeva O.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies