Opportunities to use interactive tasks in chemistry within the Middle Years Programme (basic school) of the International Baccalaureate

Cover Page

Cite item

Full Text

Abstract

Problem and purpose. Information and communication technologies (ICT) are considered one of the most progressive and effective means of increasing interest in learning, as well as developing students in modern teaching methods. In Russia, the use of ICT and the development of its theoretical aspects in teaching chemistry under the Middle Years Programme (MYP, basic school) of the International Baccalaureate is at an embryonic level and, therefore, is a modern and very urgent problem of the education system within the framework of the International Baccalaureate. New methods and means based on the use of ICT in the educational process contribute to the growing interest in the study of chemistry. Increasing the level of independence in educational activities within the framework of working with ICT contributes to the formation of a competent, developed personality, teaches children to make adequate decisions, and motivates to improve self-preparation for lessons. Thanks to the continuous movement of modern education towards change and progress, there are more and more new developments and teaching aids that can be used in teaching chemistry. All this contributes to the creation and maintenance of a stable interest in educational processes, both in the independent search and solution of problems, and at school in the classroom. Often, the generally accepted approaches to the study of the topic of valence, existing today, do not give the desired and desired results. And the insufficient assimilation of this topic by students leads to a deterioration in academic performance in the further paragraphs of the chemistry course of the basic school curriculum. In the MYP (basic school), the study of the topic “Valence” is replaced by an explanation of the concepts of electronegativity and oxidation state, which leads to the loss of one of the fundamental concepts in chemistry. That fact defines the problem of the article. The purpose of the article is to describe approaches to increasing the interest and attention of students in the context of the use of innovative interactive technologies. Methodology. The methodological basis was the scientific and methodological works of A.K. Akhlebinin, N.P. Bezrukova, G. Vern, L.S. Vygotsky, P.Ya. Galperin, S.A. Gerus, A.A. Zhurin, V.V. Zagorsky, L. S. Zaznobina, O.S. Zaitsev, M.V. Zueva, R.G. Ivanova, N.E. Kuznetsova, G.Ya. Lastushkina, T.S. Nazarova, E.I. Mashbitsa, E.S. Polat, L.F. Pleukhova, I.V. Robert, T.A. Sergeeva, N.F. Talyzina, S.G. Chaikova, G.M. Chernobelskaya, L.L. Chunikhina, M. Shanon. Results. The expediency of using interactive tasks in chemistry (on the example of the topic “Valence”) in teaching schoolchildren under the MYP has been substantiated by increasing the general level of academic performance on this topic, as well as interest in chemistry lessons. Approaches to the selection of content (on the example of the topic “Valence”) for the creation of interactive tasks, including scientific, systematic, age-appropriate, are determined. A system of interactive tasks for studying the topic “Valence” under the MYP was developed and tested, which contains teaching materials for preparing students on the specified topic, including the theoretical part and analysis of examples. Conclusion. The results allowed to conclude that the creation and use of a specially prepared system of interactive tasks in chemistry (using the example of the “Valence” topic) for the MYP leads to a significant simplification of the study of this topic and an increase in the level of intrinsic motivation to study chemistry.

Full Text

Постановка проблемы. Для осуществления требований современного химического образования разрабатываются новые образовательные базы и стратегии обучения, в числе которых интерактивное обучение химическим дисциплинам [1-8]. При таком подходе в процессе формирования и развития специальных компетенций учащихся в ходе обучения химическим дисциплинам они будут не только осваивать отдельных химических знания и умения, но и овладевать учебной деятельностью интерактивно. Термин «интерактивный» распространен в информатике и синонимичен понятию «диалоговый» [9-14]. Такой режим обычно предполагает обмен текстовыми командами и ответами. А.К. Ахлебинин и Э.Е. Нифантьев обращали внимание на глубинное значение интерактивных процессов в образовании. По их мнению, это взаимодействие с сознанием обучаемого [15]. В качестве примера можно рассмотреть такую ситуацию: учащиеся работают над заданием, где в качестве ответа на вопрос вводится произвольная формулировка ответа. В таком случае, если результат решения и является вводимым ответом, то в сознании учащегося он глубоко впечатывается и запоминается непроизвольно. В компьютерно-опосредованной коммуникации интерактивная составляющая взаимодействия является одной из наиболее значимых характеристик. В данном контексте можно говорить о контакте как между людьми, так и между пользователями и информационными ресурсами. Совместная работа выстраивается по истечении определенного временного промежутка в совместной коммуникации, так как она беспрестанно отзывается к предыдущему опыту. Суть интерактивных заданий и их применение на уроках химии можно рассматривать по-разному. Например, опираясь на уже упомянутое сравнение интерактивного процесса с диалоговым взаимодействием между человеком и компьютером, состоящем из совокупности элементарных компонентов «запрос - реакция». В этом случае «запрос» представляет собой сигнал от пользователя к обучающей программе и/или в обратном порядке. А «реакция» - это ответ на присланный сигнал. Каждый ответ определяет дальнейшие действия стороны-адресата. Из таких интерактивных элементов-сигналов пользователя к программе состоит любая интерактивная программа. С помощью интерактивных элементов удается создать кнопки навигации, помощи, справки или поиска. Таким образом, эффективность организованной интерактивности определяется умением грамотно составлять «цепочки» из простейших элементов в категориях «запрос - реакция», которые взаимопроникают друг в друга и помогают провести логические связи между предшествующими запросами и следующими за ними реакциями. Методы исследования. Направленность педагогической деятельности на формирование личности - первостепенная основа почти всех инновационных технологий, многие из которых строятся на применении интерактивных методов обучения. Суть интерактива состоит в том, чтобы создавать условия для комфортного обучения, помочь учащимся познать самих себя, разглядеть собственные таланты и раскрыть способности, стать интеллектуально состоятельными личностями и быть готовыми продуктивно участвовать в процессе обучения. Учебный процесс с применением интерактивного обучения позволяет учителю вовлечь весь класс в процесс познания и рефлексии. Благодаря совместной деятельности класса каждый учащийся ощущает важность своих идей и знаний, которыми делится с окружающими. В атмосфере взаимной поддержки это позволяет развивать и переводить на более высокие формы кооперации познавательную деятельность. Вступительный проблемный вопрос формулируется самим учителем или учащимися в процессе выполнения домашнего задания или заполнения анкеты. Нахождение ответа на него может происходить в диалоге с классом, в процессе поиска истины через систему поставленных учителем прямых вопросов или в организованных группах учащихся. Обязательное и безотлагательное условие - диалог по итогам такой работы. Диалог - это творческое сотрудничество всех участников образовательного процесса. По разные стороны могут быть различные группы учащихся или группы учеников и учителя. Цель - общий поиск ответа на поставленный вопрос или решение задачи. Такая форма общения ведет к коллективной и, что немаловажно, продуктивной работе. В реальном времени решается общая задача, значимая для каждого по отдельности. В ходе диалога учащиеся обучаются критическому мышлению, анализу информации, умению принимать во внимание все альтернативные пути и мнения, строить общение с другими людьми, находить общий язык для совместного поиска истины. Для этого нужно расширять используемые информационные источники на уроках, творческие задания, работу с документацией, таблицами, привносить новые формы работы - в парах, группах, распределяясь по ролям в модельных ситуациях. Групповое обучение считается одним из наиболее эффективных методов преподавания в системе Middle Years Programme (MYP), поскольку приобщает детей к важным навыкам жизни, осуществляет действенную коммуникацию между одноклассниками, воспитывает умение слушать, примерять точку зрения другого учащегося, разрешать конфликты, работать сообща для достижения общей цели. Работа в группе также воспитывает самоуважение, укрепляет дружбу в классе, зачастую меняет в лучшую сторону отношение к школе, дарит возможность избежать негативных сторон соревнования. В группах учащиеся убеждаются в ценности взаимопомощи и повышают академическую успеваемость. Результаты и обсуждение. В интерактивной деятельности на уроках химии в рамках реализации MYP находят место разнообразные формы организационной работы на уроке - ролевая игра, урок-конференция, урок-семинар. Использование этих технологий обязывает учителя продумывать свою работу наперед, рассчитывать дифференцированные по сложности и разнообразию деятельности задания, использовать дополнительную литературу по предмету, возможно, изменить систему оценивания. Построение интерактивного урока - задача непростая. Ведь на таком уроке учитель выступает в роли организатора, ведущего, и большая часть работы в плане изучения материала остается за учащимися, реализуется через их самостоятельную деятельность. Проведение такого форм-фактора уроков актуально при изучении тем, касающихся получения, производства или применения тех или иных веществ. Характер наших разработок напрямую зависит от MYP Международного бакалавриата, в связи с чем мы опытным путем сформулировали собственные дополнительные требования к интерактивным заданиям. Для создания системы интерактивных заданий по химии по теме «Валентность» нами использовались онлайн-платформа конструирования образовательных материалов coreapp.ai (рис. 1) и приложение для поддержки обучения и процесса преподавания с помощью интерактивных модулей learningapps.org. (рис. 2). Эксперимент выявил, что большинство учащихся испытывают повышенный интерес и желание работать на уроках химии после участия в обучении с применением интерактивных заданий (рис. 3). Такие уроки вызвали у них эмоциональный подъем, стремление вступать в дискуссии, обсуждать ответы и пути решения заданий. М.Е. Тульчинский выявил аналогичный паттерн поведения и отношения учащихся к предмету на занятиях по физике с применением информационных технологий. Мы связываем результаты экспериментов с тем, что работа с интерактивными заданиями несет в себе элемент игры, делает обучение увлекательным, помогает в более прочном и живом усвоении знаний, которые в иных условиях не вызывают такого внимания и интереса у учащихся. Участники эксперимента были разделены на две группы: контрольную - классы 8Л и 8В и экспериментальную - классы 8М и 8Г. После входного теста (табл. 1) дальнейшие уроки по теме «Валентность» в экспериментальной группе проходили с применением интерактивных заданий, в контрольной - без. Данные табл. 2 показывают повышение среднего балла в каждом классе, но у учащихся, находящихся в экспериментальной группе, прирост среднего балла несколько выше. Во всех классах также заметно значительное снижение неудовлетворительных результатов работы и в целом повышение количества работ, написанных на отметку «5». Результаты итоговой контрольной работы в каждом классе отображены в табл. 3. [Complete the lesson] [Exercises for training] [Explaining of the exercises] [Theory] [Unseen] [Unseen] [Unseen] Карточек в уроке [Blocks in the lesson] [What is valency: how to define and how to use] Примеры заданий и фрагментов прохождения [Examples of tasks and application fragments] [Valence] [Russian] [My passes] Рис. 1. Примеры заданий и фрагментов приложения coreapp.ai [Figure 1. Examples of tasks and application fragments coreapp.ai] Рис. 2. Примеры заданий и фрагментов приложения learningapps.org Exercise Choose a name for each chemical formula. nitrogen dioxide carbon dioxide dichlorine heptoxide phosphorus trioxide dichlorine monoxide carbon monoxide nitrogen dioxide phosphorus (V) oxide Figure 2. Examples of tasks and application fragments learningapps.org 0 % 10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 % 100 % 4 % 2 % 94 % Мнение не сложилось [Didn’t decide] Не понравилось работать [Didn’t liked] Понравилось работать [Liked] Рис. 3. Отношение учащихся к работе с интерактивными заданиями [Figure 3. Students’ attitude to working with interactive tasks] Таблица 1 Результаты входного тестирования по теме «Валентность» [Table 1. Results of input testing on the topic “Valence”] 8Л 8М 8Г 8В Отметки [Marks] 5 4 3 2 5 4 3 2 5 4 3 2 5 4 3 2 Количество отметок [Number of marks] 10 4 5 2 8 6 12 3 12 11 2 0 10 10 4 0 Всего учащихся [Total number of students] 21 29 25 24 Средний балл [Average grade] 4,05 3,66 4,40 4,25 Таблица 2 Результаты промежуточной самостоятельной работы по теме «Валентность» [Table 2. Results of intermediate independent work on the topic “Valence”] 8Л 8В 8М 8Г Отметки [Marks] 5 4 3 2 5 4 3 2 5 4 3 2 5 4 3 2 Количество отметок [Number of marks] 10 6 4 1 12 11 3 0 11 6 10 2 14 10 1 0 Всего учащихся [Total number of students] 21 24 29 25 Средний балл [Average grade] 4,19 4,35 3,90 4,52 Таблица 3 Результаты итоговой контрольной работы по теме «Валентность» [Table 3. Results of the final control work on the topic “Valence”] 8Л 8В 8М 8Г Отметки [Marks] 5 4 3 2 5 4 3 2 5 4 3 2 5 4 3 2 Количество отметок [Number of marks] 13 5 2 1 14 8 2 0 15 5 5 1 21 4 0 0 Всего учащихся [Total number of students] 21 24 29 25 Средний балл [Average grade] 4,43 4,50 4,31 4,84 По результатам контрольной работы можно судить о повышении среднего балла у учащихся всех классов, но в разной степени. Чтобы наглядно отразить изменение прироста показателей среднего балла за работы по теме «Валентность» у учащихся всех исследуемых классов была построена диаграмма (рис. 4). Открытые и закрытые формы интерактивных заданий по химии апробированы в образовательном процессе. После проведения сравнения их эффективности было обнаружено повышение качества знаний в большей степени от интерактивных заданий открытой формы, чем от закрытой. Применение интерактивных заданий при обучении химии повышает качество знаний и увеличивает их прочность, а также способствует росту внутренней мотивации к учению, что доказывается результатами проведенного исследования. 3 3,2 3,4 3,6 3,8 4 4,2 4,4 4,6 4,8 5 8Г 8М 8В 8Л Входное тестирование [Entrance testing] Самостоятельная работа [Intermediate independent work] Контрольная работа [Final test] Рис. 4. Изменение среднего балла в разных классах по результатам выполненных работ по теме «Валентность» [Figure 4. Change in the average score in different classes based on the results of work performed on the topic “Valence”] Заключение. На основании анализа научной, методической и учебной литературы уточнено понятие интерактивного задания, сделан вывод о важной роли интерактивных заданий в образовательном процессе при изучении химии. Содержащие информацию, предоставляемую при помощи средств информационно-коммуникационных технологий, и имеющие сложную структуру интерактивные задания предполагают предоставление учителем обратной связи и определенных условий. Рассмотренные схемы диалогового обмена информацией между учащимися и учителем, использующим в работе возможности ИКТ, отражают разновидности результатов и действий, возникающие при внесении учащимися всевозможных ответов, и демонстрируют, как варианты ответов зависят от сделанного участниками интерактивных заданий выбора, какие возможности получения учебной информации открывает самостоятельный поиск ответа и коррекции уже имеющихся знаний.

×

About the authors

Vladimir I. Tomin

School No. 1517 in Moscow

Author for correspondence.
Email: tominvi@gym1517.ru

chemistry teacher

11 Zhivopisnaya St, bldg 1, Moscow, 123103, Russian Federation

References

  1. Ahlebinin AK. Sistema mnogofunkcional'nyh interaktivnyh obuchayushchih zadanij s mul'timedia komponentami dlya elektronnogo uchebnika himii [System of multifunctional interactive training tasks with multimedia components for an electronic chemistry textbook]. Sbornik nauchnyh rabot laureatov oblastnyh premij i stipendij [Collection of scientific papers of winners of regional prizes and scholarships]. 2006;2:107–115.
  2. Ahlebinin AK. Nekotorye problemy ispol'zovaniya elektronnyh izdanij uchitelyami himii [Some problems of using electronic publications by chemistry teachers]. Informacionnye tekhnologii v obrazovanii [Information technologies in education]: proceedings of the XVI International conference-exhibition. 2006;3:13–14.
  3. Zaznobina LS, Nazarova TS, Morozova TN, Shapovalenko CB. Bank vizual'noj informacii kak nauchnaya tekhniko-pedagogicheskaya zadacha [Bank of visual information as a scientific technical and pedagogical task]. Informatika i obrazovanie [Informatics and education]. 1996;(4):1–4.
  4. Gabrielyan OS. Obshchaya himiya v testah, zadachah, uprazhneniyah: 11 klass [General chemistry in tests, tasks, exercises: grade 11]. Moscow: Drofa Publ.; 2003.
  5. Grabeckij AA, Zaznobina LC, Nazarova TS. Ispol'zovanie sredstv obucheniya na urokah himii [Use of teaching tools in chemistry lessons]. Moscow: Prosveshchenie Publ.; 1988.
  6. Zagorskij VV. Internet-resursy dlya uchitelya [Internet resources for teachers]. Himiya v shkole [Chemistry at school]. 2003;(9):2–7.
  7. Pak MS. Algoritmy v obuchenii himii [Algorithms in teaching chemistry]. Moscow: Prosveshchenie Publ.; 1993.
  8. Chernobelskaya GM. Osnovy metodiki obucheniya himii [Fundamentals of chemistry teaching methods]. Moscow: Prosveshchenie Publ.; 1987.
  9. Grigorev SG, Grinshkun VV. Informatizaciya obrazovaniya: fundamental'nye osnovy [Informatization of education: the fundamental bases]. Moscow: MGPU Publ.; 2005.
  10. Zaslavskaya O. Yu. Informatizaciya obrazovaniya: novoe ponimanie mesta i roli uchitelya v uchebnom processe [Informatization of education: a new understanding of the place and role of teachers in the educational process]. Vestnik Moskovskogo gorodskogo pedagogicheskogo universiteta. Seriya: Informatika i informatizacija obrazovanija [Bulletin of the Moscow City Pedagogical University. Series: Informatics and Informatization of Education]. 2007. No 9. Pp. 81 – 82.
  11. Zaslavskaya OYu. Transformaciya obrazovaniya v usloviyah razvitiya cifrovyh tekhnologij [Transformation of education in the conditions of development of digital technologies]. Gorizonty i riski razvitiya obrazovaniya v usloviyah sistemnyh izmenenij i cifrovizacii [Horizons and risks of development of education in the conditions of system changes and digitalization]: collection of scientific papers of the XII International scientific and practical conference. Moscow: Mezhdunarodnaya akademiya nauk pedagogicheskogo obrazovaniya; 2020. p. 70–74.
  12. Zaslavskaya OYu. Vozmozhnosti setevyh obrazovatel'nyh resursov dlya podgotovki kriterial'no-orientirovannyh zadanij [Opportunities of network educational resources for preparation of criteria-oriented tasks]. Vestnik Moskovskogo gorodskogo pedagogicheskogo universiteta. Seriya: Informatika i informatizacija obrazovanija [Bulletin of the Moscow City Pedagogical University. Series: Informatics and Informatization of Education]. 2016;4(38):37–43.
  13. Nazarova TS, Tihomirova KM, Kudina IYu, Kozhevnikov DN, et al. Instrumental'naya didaktika: perspektivnye sredstva, sredy, tekhnologii obucheniya [Instrumental didactics: promising tools, environments, learning technologies]. Moscow, Saint Petersburg; 2012.
  14. Robert IV. Sovremennye informacionnye tekhnologii v obrazovanii: didakticheskie problemy, perspektivy ispol'zovaniya [Modern information technologies in education: didactic problems, prospects for use]. Moscow: Shkola-Press; 1994.
  15. Ahlebinin AK, Lazykina LG, Lihachev VN, Nifantev EE. Demonstracionnyj eksperiment po himii na mul'timedijnom komp'yutere [Demonstration experiment in chemistry on a multimedia computer]. Himiya v shkole [Chemistry at school]. 1999;(5):56–60.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2020 Tomin V.I.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.