Том 57, № (2015)
- Год: 2015
- Статей: 6
- URL: https://journals.rudn.ru/CMFD/issue/view/1596
Весь выпуск
Статьи
Грубые диффеоморфизмы с базисными множествами коразмерности один
Аннотация
Обзор посвящен изложению результатов (в том числе и авторов обзора), полученных начиная с 2000-х годов по настоящее время, по топологической классификации структурно устойчивых каскадов, заданных на гладком замкнутом многообразии Mn (n>3) в предположении, что их неблуждающие множества либо содержат ориентируемый растягивающийся (сжимающийся) аттрактор (репеллер) коразмерности один, либо целиком состоят из базисных множеств коразмерности один. Представленные результаты являются естественным продолжением топологической классификации диффеоморфизмов Аносова коразмерности один. В обзоре также отражен прогресс, связанный с построением глобальной функции Ляпунова и энергетической функции для динамических систем на многообразиях (в частности, описана конструкция энергетической функции для структурно устойчивых 3-каскадов, неблуждающее множество которых содержит двумерный растягивающийся аттрактор).
Современная математика. Фундаментальные направления. 2015;57:5-30
5-30
Операторный подход к модели Ильюшина вязкоупругого тела параболического типа
Аннотация
В работе исследована задача о малых движениях вязкоупругого тела параболического типа. Доказана теорема об однозначной сильной разрешимости соответствующей начально-краевой задачи. Исследован спектр и свойства корневых элементов возникающего операторного блока. Точнее, доказана теорема о существенном и дискретном спектре главного операторного блока. Найдена асимптотическая формула для серии собственных значений, сгущающихся в бесконечности. Доказаны утверждения о полноте и базисности системы корневых элементов главного оператора. Найдены представления решения исходного интегродифференциального уравнения второго порядка в виде контурных интегралов и в виде разложения по системе собственных элементов некоторого операторного пучка. Доказано одно утверждение о стабилизации решения эволюционной задачи. В последнем параграфе исследован частный случай рассматриваемой модели - случай синхронно-изотропной среды параболического типа.
Современная математика. Фундаментальные направления. 2015;57:31-64
31-64
Задача успокоения системы, описываемой смешанным дифференциально-разностным уравнением
Современная математика. Фундаментальные направления. 2015;57:65-70
65-70
Об абстрактной формуле Грина для тройки гильбертовых пространств и полуторалинейных форм
Аннотация
В работе при некоторых общих предположениях выводится абстрактная формула Грина для тройки гильбертовых пространств и (абстрактного) оператора следа, а также аналогичная формула, отвечающая полуторалинейной форме. Установлены условия существования абстрактной формулы Грина для смешанных краевых задач. В качестве основного приложения выводятся обобщенные формулы Грина для оператора Лапласа применительно к краевым задачам в липшицевых областях.
Современная математика. Фундаментальные направления. 2015;57:71-107
71-107
Введение в сублинейный анализ - 2: Симметрический вариант
Аннотация
Построена развитая теория симметрических дифференциалов Фреше и симметрических K-субдифференциалов Фреше первого и высших порядков, включающая, в частности, теорему о среднем и формулу Тейлора. Найдены простые достаточные условия симметрической K-субдифференцируемости. Рассмотрены некоторые приложения к рядам Фурье и вариационным функционалам.
Современная математика. Фундаментальные направления. 2015;57:108-161
108-161
Секвенциальные аналоги теорем Ляпунова и Крейна-Мильмана в пространствах Фреше
Аннотация
В работе развиваются исследования теории антикомпактных множеств (антикомпактов), введенных нами ранее. Описан класс пространств Фреше, в которых существуют антикомпакты - это те и только те пространства, которые имеют счетное тотальное множество линейных непрерывных функционалов. В таких пространствах доказан аналог теоремы Хана-Банаха о продолжении всякого линейного непрерывного функционала, заданного на исходном пространстве, на пространство, порожденное некоторым антикомпактом. Получен аналог теоремы А. А. Ляпунова о выпуклости и компактности образа векторных мер, который утверждает выпуклость и относительную слабую компактность специального типа замыкания образа безатомной векторной меры со значениями в пространстве Фреше, имеющем антикомпакт. С использованием полученного аналога теоремы А. А. Ляпунова доказана разрешимость бесконечномерного аналога задачи о справедливом разделе ресурсов, а также получен аналог теоремы А. А. Ляпунова для неаддитивных аналогов мер - векторных квазимер со значениями во всяком бесконечномерном пространстве Фреше, имеющем антикомпакт. В классе пространств Фреше, имеющих антикомпакт, получены аналоги теоремы Крейна-Мильмана о крайних точках для необязательно компактных выпуклых ограниченных множеств. Особое место занимают аналоги теоремы Крейна-Мильмана в терминах введенных в работе крайних последовательностей (или секвенциальные аналоги теоремы Крейна-Мильмана).
Современная математика. Фундаментальные направления. 2015;57:162-183
162-183