Tumor models in the investigation of oral cancer pathogenesis and treatment development
- Authors: Tretyakova M.S.1, Prostakishina E.A.1, Kolegova E.S.1, Choinzonov E.L.1, Denisov E.V.1
-
Affiliations:
- Tomsk National Research Medical Center of the Russian Academy of Sciences
- Issue: Vol 29, No 4 (2025): MEDICAL GENETICS
- Pages: 480-487
- Section: CYTOLOGY
- URL: https://journals.rudn.ru/medicine/article/view/47649
- DOI: https://doi.org/10.22363/2313-0245-2025-29-4-480-487
- EDN: https://elibrary.ru/AHVILO
- ID: 47649
Cite item
Full Text
Abstract
Relevance. Oral cancer is one of the most common cancers among neoplasms of the head and neck. Oral cancer is characterized by a poor prognosis, a lack of specific biomarkers and highly effective targeted treatment. Experimental model systems are needed to study oral cancer pathogenesis and develop new treatments. Understanding the molecular features of oral cancer represents one of the key steps in developing new therapeutic strategies. A wide range of biological models is currently available, but their versatility is limited. Experimental models for studying oral cancer have evolved from cell cultures to in vivo systems that mimic pathological processes and the tumor-stroma interactions. Here, we summarized the available information on the current state of experimental oral cancer systems. In vitro models include immortalized and primary cell lines, spheroids and organoids, whereas in vivo models are represented by syngeneic and xenogeneic models, immunocompromised, immunocompetent, humanized, and genetically engineered animals. In vitro models are effective in studying the biology of oral tumors and evaluating the effectiveness of therapy due to high reproducibility and speed of obtaining results. Existing cell lines are widely used for fundamental and translational research and serve as a crucial component in preclinical trials. In vivo models are used in phase II of preclinical research in drug development and thus represent a transitional stage to clinical trials. Conclusion. Despite significant progress in the development of variousexperimental models, each of them has its own advantages and limitations. There is no universal model that allows for the complete extrapolation of the obtained results to the human body. Therefore, when planning research, it is crucial to select carefully the most suitable biological models based on the objectives at hand.
Keywords
Full Text
Введение
Рак полости рта (РПР) является одним из самых распространенных видов рака среди новообразований головы и шеи и характеризуется плохим прогнозом и отсутствием специфических биомаркеров. Основными факторами риска развития РПР являются употребление табака и алкоголя, воспаление, наличие вируса папилломы человека (ВПЧ) и плоского лишая полости рта [1]. РПР считается заболеванием пожилых людей, однако в последние годы наблюдается активный рост заболеваемости в молодом возрасте [2]. Этиологические факторы, характерные для РПР в старшей возрастной категории, не всегда ассоциированы с данным заболеванием в молодом возрасте. Предполагается, что РПР у молодых пациентов является отдельной клинической формой и характеризуется специфической этиологией и патогенезом [3, 4].
Для понимания биологии развития РПР необходимы актуальные модельные системы. На сегодняшний день модели для исследования РПР прошли путь от клеточных культур до систем in vivo, которые имитируют патологические процессы и взаимодействие опухоли и стромы. Но все еще существует потребность в разработке новых модельных систем для понимания молекулярных и генетических механизмов возникновения и развития РПР и оценки эффективности новых терапевтических и профилактических стратегий [5].
Получение клеточных моделей рака полости рта
Получение клеточных линий из опухолей пациентов является распространенным подходом в моделировании и изучении злокачественных новообразований. В банке ATCC (American Type Culture Collection) представлены доступные аутентифицированные иммортализованные линии опухолей миндалин (UWO37 (HPV16), HNO41), языка (UWO23, SCC‑25, HNO97, HNO223, CAL 27), подчелюстной железы (A64-CLS) и карциномы полости рта (CLS‑354, HNO258). Однако только половина из перечисленных клеточных линий РПР использовалась для разработки терапевтических стратегий, открытия мишеней или оценки химиочувствительности и химиорезистентности [6–12]. Модели in vitro позволяют провести скрининг эффективности новых противоопухолевых веществ и оценки систем доставки стандартных химиопрепаратов. Одним из примеров является разработка новой формы доксорубицина — доксила, при скрининге которого было показано значительное снижение пролиферации клеток РПР [9]. Модельные системы in vitro позволяют модифицировать стандартные схемы лечения и подобрать новые. Так, на моделях in vitro была показана эффективность применения радиосенсибилизаторов для лучевой терапии РПР [10]. Все вышеупомянутые данные, полученные на иммортализованных клеточных линиях, послужили основой для дальнейших экспериментов на более сложных моделях in vivo.
В отличие от иммортализованных культур первичные линии, полученные из операционного материала, являются более релевантной моделью в виду эффективного сохранения опухолевой гетерогенности. Первичные линии эпителиальных клеток РПР получены из слизистой оболочки щеки, слизистой оболочки десны, языка, приносовых пазух и грушевидной ямки [13]. Данные модели позволяют воссоздать опухоль-стромальные взаимодействия, имитирующие микроокружение опухоли. Чаще всего первичные культуры используют для оценки эффективности новых терапевтических подходов с целью дальнейшей трансляции лечения в онкологическую практику.
При получении первичных линий РПР чаще всего используют ферментативный и эксплантационный методы. При эксплантационном методе клетки мигрируют из ткани на культуральный пластик через 48 часов после помещения в среду, тогда как при ферментативном подходе клетки из полученной суспензии адгезируют в течение 12 часов. При обоих методах выявляются как эпителиальные, так и фибробластоподобные клетки в полученной культуре. Тем не менее, ферментативный метод демонстрирует большую эффективность по выходу клеток и требует меньше времени [14].
Генетические изменения иммортализованных и первичных клеточных линий с помощью систем CRISPR-Cas, TALLEN и siRNA позволяют изучать функциональную значимость генов, открывать новые маркеры и терапевтические мишени. Так, при РПР нокаут гена LRP1B привел к повышенной пролиферации и миграции и способствовал развитию устойчивости к химио- и радиотерапии [6]. Нокдаун FAT1 и CASP8 в первичной культуре РПР усилил пролиферацию и миграцию клеток, что привело к ускоренному росту первичной культуры плоскоклеточной карциномы полости рта за счет повышения пролиферации [15]. Таким образом, выявленные функциональные значения генетических нарушений являются основой в разработке лекарственных препаратов и диагностических и прогностических маркеров РПР.
Канцерогенез — это многоэтапный процесс, для изучения которого необходимы более сложные трехмерные модели in vitro, имитирующие ткани in vivo. К таким моделям относятся сфероиды, или культивируемые свободно плавающие агрегаты опухолевых клеток, и органоиды, представляющие собой миниатюрные версии органов, полученные из стволовых клеток [16]. Трехмерные модели позволяют с большей эффективностью разрабатывать и оценивать новые терапевтические решения [17–19]. Так, применение органоидов, состоящих из клеток РПР (дно рта, язык и альвеолярный отросток) и соответствующего нормального эпителия, выявило различную чувствительность на стандартные схемы лечения — химиотерапию цисплатином, карбоплатином и цетуксимабом и лучевую терапию. Ответ органоидов на воздействие химиолучевой терапии был сопоставим с реакцией пациентов на аналогичную терапию в 26% случаев. Кроме того, использование клеточных сфероидов РПР позволило выбрать новые таргетные препараты, которые в настоящий момент находятся на I и II фазах клинических испытаний: эверолимус, нирапариб, алпелисиб и вемурафениб [20].
Таким образом, модельные системы in vitro представляют собой эффективный инструмент для изучения биологии опухолей полости рта и оценки эффективности терапии за счет высокой воспроизводимости и скорости получения результатов.
Животные модели рака полости рта
Животные модели, как и модели in vitro, широко используются для исследования РПР (рисунок 1) [21–25]. Модели РПР разработаны на иммунокомпетентных и иммуносупрессивных грызунах. РПР у мышей может быть вызван трансплантацией опухолевых клеток (ксенографт или аллографт) и химическим канцерогеном, преимущественно 4‑нитрохинолин 1‑оксидом [26].
Существующие клеточные линии РПР (SCC7, MOC, MOC1, MOC2) используются для разработки сингенных моделей [27–30]. Сингенные модели на иммунокомпетентных мышах позволяют провести первичный анализ фармакологических свойств тестируемых химических соединений. Для доклинических исследований используют более сложную биологическую модель — иммуносупресивных мышей с дальнейшей перевивкой человеческих опухолевых клеток (ксеногенные модели). Первичные и постоянные клеточные линии, трансплантированные мышам подкожно для установки гетеротопической модели, легко контролировать на предмет размера опухоли и реакции на терапевтическое воздействие [5]. Однако мыши с иммунодефицитом не могут в полной мере отражать взаимодействие опухоли с ее микроокружением из-за отсутствия полноценного иммунного ответа. Кроме того, ксенографты характеризуются высокой скоростью пролиферации клеток, что не позволяет фиксировать промежуточные стадии заболевания [5].
Рис. 1. Актуальные модели РПР
Fig. 1. Current models of oral cancer
При моделировании РПР in vivo опухолевые клетки вводят в слизистую оболочку щеки, мышцы языка или дно полости рта (ортотопическая модель) [21]. Мышиные модели РПР используются в разработке новых подходов в таргетной и иммунной терапии, оценки химиорезистентности и открытии новых мишеней [31–36]. На моделях in vivo показана эффективность сочетанного действия облучения и иммунотерапии, которое значительно тормозило рост опухоли и улучшало общую выживаемость мышей с ксенографтами РПР по сравнению с группой контроля [31]. Одним из примеров разработки таргетных препаратов является доклиническое исследование MEDI0641 — конъюгата антитела с лекарственным средством, нацеленного на онкофетальный антиген 5T4. Однократное введение конъюгата вызывало регрессию ксенографтов РПР у мышей [32].
В экспериментальной онкологии помимо иммуносупресивных и иммунокомпетентных животных используют генетически модифицированных и гуманизированных мышей [37]. Генетически модифицированные мышиные модели (GEMM) получены путем индукции (нокинга) или удаления (нокаута) определенных генов [38]. С использованием GEMM изучена роль генов PIK3CA, EGFR, TP53 и CDK‑4 в патогенезе РПР [39–41]. Тем не менее, GEMM имеют определенные ограничения из-за неконтролируемой экспрессии трансгенов и распространения опухоли за пределы ротовой полости.
Гуманизированные мыши используются в качестве трансляционных моделей во многих областях экспериментальной онкологии, включая клинические исследования, и представляют собой животных с иммунодефицитом, которым привиты иммунные человеческие клетки. Для создания функциональной иммунной системы человека используют два основных источника человеческих клеток: мононуклеары периферической крови или CD34+ гемопоэтические стволовые клетки. Иммунный компонент вводят внутривенно или внутрибрюшинно, и далее ортотопически прививают опухолевые клетки. Чаще всего, гуманизированных мышей используют при моделировании лейкемии из-за высокой приживаемости данных опухолевых клеток [42]. В литературе крайне редко встречаются упоминания использования гуманизированных мышей при РПР. Например, модель гуманизированных мышей с ВПЧ-ассоциированным раком языка была разработана для дальнейшей доклинической оценки эффективности терапевтических подходов ВПЧ-положительного РПР [43].
Описаны также модели РПР на крысах, хомяках и кошках [44–46]. РПР у кошек развивается спонтанно, у крыс под воздействием 4‑нитрохинолин 1‑оксида. Модель защечного мешка хомяка является традиционным высоковоспроизводимым подходом для поиска новых терапевтических стратегий, который был разработан еще в 50‑е годы прошлого столетия [21, 46]. Канцероген 4‑нитрохинолин 1‑оксид наносится в растворе на поверхность слизистой оболочки защечного пространства и позволяет оценить поэтапные изменения в ряду норма — предрак — рак [47].
Таким образом, модели in vivo эффективны в доклинических исследованиях: лабораторные животные используются во второй фазе при разработке лекарственных средств и являются переходным этапом к клиническим испытаниям.
Выводы
Понимание молекулярных механизмов РПР имеет решающее значение в разработке новых методов лечения данного заболевания. Использование клеточных линий позволяет обнаружить новые этиологические и патогенетические факторы заболевания и провести анализ фармакологических свойств химических соединений. Модели in vivo эффективны в разработке новых терапевтических стратегий в лечении РПР. Тем не менее, при планировании исследований важно учитывать ограничения и недостатки моделей in vitro и in vivo и выбирать наиболее корректные, основываясь на их преимуществах и экспериментальных задачах.
About the authors
Maria S. Tretyakova
Tomsk National Research Medical Center of the Russian Academy of Sciences
Author for correspondence.
Email: trremar@mail.ru
ORCID iD: 0000-0002-5040-931X
SPIN-code: 5207-8330
Tomsk, Russian Federation
Elizaveta A. Prostakishina
Tomsk National Research Medical Center of the Russian Academy of Sciences
Email: trremar@mail.ru
ORCID iD: 0000-0002-1405-3723
SPIN-code: 4517-4433
Tomsk, Russian Federation
Elena S. Kolegova
Tomsk National Research Medical Center of the Russian Academy of Sciences
Email: trremar@mail.ru
ORCID iD: 0000-0001-9122-3274
SPIN-code: 5865-1264
Tomsk, Russian Federation
Evgeny L. Choinzonov
Tomsk National Research Medical Center of the Russian Academy of Sciences
Email: trremar@mail.ru
ORCID iD: 0000-0002-3651-0665
SPIN-code: 2240-8730
Tomsk, Russian Federation
Evgeny V. Denisov
Tomsk National Research Medical Center of the Russian Academy of Sciences
Email: trremar@mail.ru
ORCID iD: 0000-0003-2923-9755
SPIN-code: 9498-5797
Tomsk, Russian Federation
References
- Li Q, Dong H, Yang G, Song Y, Mou Y, Ni Y. Mouse Tumor-Bearing Models as Preclinical Study Platforms for Oral Squamous Cell Carcinoma. Front Oncol. 2020;10:212. doi: 10.3389/fonc.2020.00212
- Miranda-Filho A, Bray F. Global patterns and trends in cancers of the lip, tongue and mouth. Oral Oncol. 2020;102:104551. doi: 10.1016/j.oraloncology.2019.104551
- Kolegova ES, Patysheva MR, Larionova IV, Fedorova IK, Kulbakin DE, Choinzonov EL, Denisov EV. Early-onset oral cancer as a clinical entity: aetiology and pathogenesis. Int J Oral Maxillofac Surg. 2022;51(12):1497–1509. doi: 10.1016/j.ijom.2022.04.005
- Patysheva MR, Kolegova ES, Khozyainova AA, Prostakishina EA, Korobeynikov VY, Menyailo ME, et al. The Consortium E. Pathogenesis of Oral Cancer in Young A. Revealing molecular mechanisms of early-onset tongue cancer by spatial transcriptomics. Sci Rep. 2024;14(1):26255. doi: 10.1038/s41598–024–76044–2
- Luo JJ, Young CD, Zhou HM, Wang XJ. Mouse Models for Studying Oral Cancer: Impact in the Era of Cancer Immunotherapy. J Dent Res. 2018;97(6):683–690. doi: 10.1177/0022034518767635
- Shaikh MH, Dawson A, Prokopec SD, Barrett JW, Y.F. Zeng P, Khan MI, et al. Loss of LRP1B expression drives acquired chemo and radio-resistance in HPV-positive head and neck cancer. Oral Oncol. 2023;146:106580. doi: 10.1016/j.oraloncology.2023.106580
- Lakshmi T, Ezhilarasan D, Nagaich U, Vijayaragavan R. Acacia catechu Ethanolic Seed Extract Triggers Apoptosis of SCC‑25 Cells. Pharmacogn Mag. 2017;13(Suppl 3):405–411. doi: 10.4103/pm.pm_458_16
- Eloraby DAI, El-Gayar SF, El-Bolok AH, Ammar SG, El Shafei MM. In Vitro Assessment of the Cytotoxic Effect of 5-Fluorouracil, Thymoquinone and their Combination on Tongue Squamous Cell Carcinoma Cell Line. Asian Pac J Cancer Prev. 2024;25(6):2169–2176. doi: 10.31557/apjcp.2024.25.6.2169
- El-Hamid ESA, Gamal-Eldeen AM, Sharaf Eldeen AM. Liposome-coated nano doxorubicin induces apoptosis on oral squamous cell carcinoma CAL‑27 cells. Archives of Oral Biology. 2019;103:47–54. doi: 10.1016/j.archoralbio.2019.05.011
- Mentzel J, Hildebrand LS, Kuhlmann L, Fietkau R, Distel LV. Effective Radiosensitization of HNSCC Cell Lines by DNA-PKcs Inhibitor AZD7648 and PARP Inhibitors Talazoparib and Niraparib. Int J Mol Sci. 2024;25(11):5629. doi: 10.3390/ijms25115629
- Dziedzic A, Kubina R, Kabała-Dzik A, Tanasiewicz M. Induction of Cell Cycle Arrest and Apoptotic Response of Head and Neck Squamous Carcinoma Cells (Detroit 562) by Caffeic Acid and Caffeic Acid Phenethyl Ester Derivative. Evidence-Based Complementary and Alternative Medicine. 2017;2017(1):6793456. doi: 10.1155/2017/6793456
- de Llobet LI, Baro M, Mesia R, Balart J. Simvastatin Enhances the Effects of Radiotherapy and Cetuximab on a Cell Line (FaDu) Derived from a Squamous Cell Carcinoma of Head and Neck. Transl Oncol. 2014;7(4):513–522. doi: 10.1016/j.tranon.2014.02.008
- Dwivedi N, Gangadharan C, Pillai V, Kuriakose MA, Suresh A, Das M. Establishment and characterization of novel autologous pair cell lines from two Indian non-habitual tongue carcinoma patients. Oncol Rep. 2022;48(3). doi: 0.3892/or.2022.8362
- Ganjibakhsh M, Aminishakib P, Farzaneh P, Karimi A, Fazeli SAS, Rajabi M, et al. Establishment and Characterization of Primary Cultures from Iranian Oral Squamous Cell Carcinoma Patients by Enzymatic Method and Explant Culture. J Dent (Tehran). 2017;14(4):191–202. doi: 10.55463/issn.1674–2974.49.9.2
- Goldie SJ, Mulder KW, Tan DW, Lyons SK, Sims AH, Watt FM. FRMD4A upregulation in human squamous cell carcinoma promotes tumor growth and metastasis and is associated with poor prognosis. Cancer Res. 2012;72(13):3424–3436. doi: 10.1158/0008–5472.can‑12–0423
- Chaves P, Garrido M, Oliver J, Pérez-Ruiz E, Barragan I, Rueda-Domínguez A. Preclinical models in head and neck squamous cell carcinoma. Br J Cancer. 2023;128(10):1819–1827. doi: 10.1038/s41416–023–02186–1
- Ono K, Sato K, Nakamura T, Yoshida Y, Murata S, Yoshida K, et al. Reproduction of the Antitumor Effect of Cisplatin and Cetuximab Using a Three-dimensional Spheroid Model in Oral Cancer. Int J Med Sci. 2022;19(8):1320–1333. doi: 10.7150/ijms.74109
- Iannelli F, Zotti AI, Roca MS, Grumetti L, Lombardi R, Moccia T, et al. Valproic Acid Synergizes With Cisplatin and Cetuximab in vitro and in vivo in Head and Neck Cancer by Targeting the Mechanisms of Resistance. Front Cell Dev Biol. 2020;8:732. doi: 10.3389/fcell.2020.00732
- Al-Samadi A, Poor B, Tuomainen K, Liu V, Hyytiäinen A, Suleymanova I, Mesimaki K, Wilkman T, Mäkitie A, Saavalainen P, Salo T. In vitro humanized 3D microfluidic chip for testing personalized immunotherapeutics for head and neck cancer patients. Exp Cell Res. 2019;383(2):111508. doi: 10.1016/j.yexcr.2019.111508
- Driehuis E, Kolders S, Spelier S, Lõhmussaar K, Willems SM, Devriese LA, et al. Oral Mucosal Organoids as a Potential Platform for Personalized Cancer Therapy. Cancer Discov. 2019;9(7):852–871. doi: 10.1158/2159–8290.cd‑18–1522
- Khayatan D, Hussain A, Tebyaniyan H. Exploring animal models in oral cancer research and clinical intervention: A critical review. Vet Med Sci. 2023;9(4):1833–1847. doi: 10.1002/vms3.1161
- Luo JJ, Young CD, Zhou HM, Wang XJ. Mouse Models for Studying Oral Cancer: Impact in the Era of Cancer Immunotherapy. J Dent Res. 2018;97(6):683–690. doi: 10.1177/0022034518767635
- Foy JP, Tortereau A, Caulin C, Le Texier V, Lavergne E, Thomas E, et al. The dynamics of gene expression changes in a mouse model of oral tumorigenesis may help refine prevention and treatment strategies in patients with oral cancer. Oncotarget. 2016;7(24):35932–35945. doi: 10.18632/oncotarget.8321
- Demétrio de Souza França P, Guru N, Roberts S, Kossatz S, Mason C, et al. Fluorescence-guided resection of tumors in mouse models of oral cancer. Sci Rep. 2020;10(1):11175. doi: 10.1038/s41598–020–67958–8
- Chen YF, Chang KW, Yang IT, Tu HF, Lin SC. Establishment of syngeneic murine model for oral cancer therapy. Oral Oncol. 2019;95:194–201. doi: 10.1016/j.oraloncology.2019.06.026
- Ishida K, Tomita H, Nakashima T, Hirata A, Tanaka T, Shibata T, Hara A. Current mouse models of oral squamous cell carcinoma: Genetic and chemically induced models. Oral Oncol. 2017;73:16–20. doi: 10.1016/j.oraloncology.2017.07.028
- Dong H, Su H, Chen L, Liu K, Hu H-m, Yang W, Mou Y. Immunocompetence and mechanism of the DRibble-DCs vaccine for oral squamous cell carcinoma. Cancer Management and Research. 2018;10:493–501. doi: 10.2147/CMAR.S155914
- Nagaya T, Nakamura Y, Okuyama S, Ogata F, Maruoka Y, Choyke PL, Allen C, Kobayashi H. Syngeneic Mouse Models of Oral Cancer Are Effectively Targeted by Anti–CD44-Based NIR-PIT. Molecular Cancer Research. 2017;15(12):1667. doi: 10.1158/1541–7786.mcr‑17–0333
- Chung MK, Jung YH, Lee JK, Cho SY, Murillo-Sauca O, Uppaluri R, Shin JH, Sunwoo JB. CD271 Confers an Invasive and Metastatic Phenotype of Head and Neck Squamous Cell Carcinoma through the Upregulation of Slug. Clinical Cancer Research. 2018;24(3):674–683. doi: 10.1158/1078–0432.CCR‑17–0866
- Judd NP, Allen CT, Winkler AE, Uppaluri R. Comparative analysis of tumor-infiltrating lymphocytes in a syngeneic mouse model of oral cancer. Otolaryngol Head Neck Surg. 2012;147(3):493–500. doi: 10.1177/0194599812442037
- Oweida A, Lennon S, Calame D, Korpela S, Bhatia S, Sharma J, et al. Ionizing radiation sensitizes tumors to PD-L1 immune checkpoint blockade in orthotopic murine head and neck squamous cell carcinoma. Oncoimmunology. 2017;6(10): e1356153. doi: 10.1080/2162402x.2017.1356153
- Kerk SA, Finkel KA, Pearson AT, Warner KA, Zhang Z, Nör F, et al. 5T4-Targeted Therapy Ablates Cancer Stem Cells and Prevents Recurrence of Head and Neck Squamous Cell Carcinoma. Clinical Cancer Research. 2017;23(10):2516–2527. doi: 10.1158/1078–0432.ccr‑16–1834
- Fang Z, Zhao J, Xie W, Sun Q, Wang H, Qiao B. LncRNA UCA1 promotes proliferation and cisplatin resistance of oral squamous cell carcinoma by sunppressing miR‑184 expression. Cancer Med. 2017;6(12):2897–2908. doi: 10.1002/cam4.1253
- Feng X, Luo Q, Zhang H, Wang H, Chen W, Meng G, Chen F. The role of NLRP3 inflammasome in 5‑fluorouracil resistance of oral squamous cell carcinoma. Journal of Experimental & Clinical Cancer Research. 2017;36(1):81. doi: 10.1186/s13046–017–0553‑x
- Ozawa H, Ranaweera RS, Izumchenko E, Makarev E, Zhavoronkov A, Fertig EJ, et al. SMAD4 Loss Is Associated with Cetuximab Resistance and Induction of MAPK/JNK Activation in Head and Neck Cancer Cells. Clinical Cancer Research. 2017;23(17):5162–5175. doi: 10.1158/1078–0432.ccr‑16–1686
- Wang Y, Zhu Y, Wang Q, Hu H, Li Z, Wang D, Zhang W, Qi B, Ye J, Wu H, Jiang H, Liu L, Yang J, Cheng J. The histone demethylase LSD1 is a novel oncogene and therapeutic target in oral cancer. Cancer Lett. 2016;374(1):12–21. doi: 10.1016/j.canlet.2016.02.004
- Tretyakova MS, Bokova UA, Korobeynikova AA, Denisov EV. Experimental models of tumor growth in soft tissue sarcomas. RUDN Journal of Medicine. 2023;27(4):459–469. doi: 10.22363/2313-0245-2023-27-4-459-469. (In Russian).
- Masood R, Hochstim C, Cervenka B, Zu S, Baniwal SK, Patel V, Kobielak A, Sinha UK. A novel orthotopic mouse model of head and neck cancer and lymph node metastasis. Oncogenesis. 2013;2(9): e68. doi: 10.1038/oncsis.2013.33
- Tan MT, Wu JG, Callejas-Valera JL, Schwarz RA, Gillenwater AM, Richards-Kortum RR, Vigneswaran N. A PIK3CA transgenic mouse model with chemical carcinogen exposure mimics human oral tongue tumorigenesis. Int J Exp Pathol. 2020;101(1–2):45–54. doi: 10.1111/iep.12347
- Lin YH, Yang MC, Tseng SH, Jiang R, Yang A, Farmer E, et al. Integration of Oncogenes via Sleeping Beauty as a Mouse Model of HPV16(+) Oral Tumors and Immunologic Control. Cancer Immunol Res. 2018;6(3):305–319. doi: 10.1158/2326–6066.cir‑16–0358
- Kalish JM, Tang XH, Scognamiglio T, Zhang T, Gudas LJ. Doxycycline-induced exogenous Bmi‑1 expression enhances tumor formation in a murine model of oral squamous cell carcinoma. Cancer Biol Ther. 2020;21(5):400–411. doi: 10.1080/15384047.2020.1720485
- Lysenko V, McHugh D, Behrmann L, Rochat MA, Wilk CM, Kovtonyuk L, et al. Humanised mouse models for haematopoiesis and infectious diseases. Swiss Med Wkly. 2017;147: w14516. doi: 10.4414/smw.2017.14516
- Schifflers C, Zottnick S, Förster JD, Kruse S, Yang R, Wiethoff H, et al. Development of an Orthotopic HPV16-Dependent Base of Tongue Tumor Model in MHC-Humanized Mice. Pathogens. 2023;12(2):188. doi: 10.3390/pathogens12020188
- Yahya F, Mohd Bakri M, Hossain MZ, Syed Abdul Rahman SN, Mohammed Alabsi A, Ramanathan A. Combination Treatment of TRPV4 Agonist with Cisplatin Promotes Vessel Normalization in an Animal Model of Oral Squamous Cell Carcinoma. Medicina (Kaunas). 2022;58(9). doi: 10.3390/medicina58091229
- Cannon CM, Trembley JH, Kren BT, Unger GM, O’Sullivan MG, Cornax I, Modiano JF, Ahmed K. Therapeutic Targeting of Protein Kinase CK2 Gene Expression in Feline Oral Squamous Cell Carcinoma: A Naturally Occurring Large-Animal Model of Head and Neck Cancer. Hum Gene Ther Clin Dev. 2017;28(2):80–86. doi: 10.1089/humc.2017.008
- Goldberg M, Manzi A, Birdi A, Laporte B, Conway P, Cantin S, Mishra V, Singh A, Pearson AT, Goldberg ER, Goldberger S, Flaum B, Hasina R, London NR, Gallia GL, Bettegowda C, Young S, Sandulache V, Melville J, Shum J, O’Neill SE, Aydin E, Zhavoronkov A, Vidal A, Soto A, Alonso MJ, Rosenberg AJ, Lingen MW, D’Cruz A, Agrawal N, Izumchenko E. A nanoengineered topical transmucosal cisplatin delivery system induces anti-tumor response in animal models and patients with oral cancer. Nat Commun. 2022;13(1):4829. doi: 10.1038/s41467–022–31859–3
- Monti-Hughes A, Aromando RF, Pérez MA, Schwint A, EItoiz ME. The hamster cheek pouch model for field cancerization studies. Periodontology 2000. 2015;67(1):292–311. doi: 10.1111/prd.12066
Supplementary files











