Immunopathogenic features of hemorrhagic fever with renal syndrome as criteria for early immunodiagnostics
- Authors: Ivanov M.F.1, Balmasova I.P.2, Malova E.S.3, Konstantinov D.Y.1
-
Affiliations:
- Samara State Medical Uniiversity
- Russian University of Medcine
- Reaviz Medical University
- Issue: Vol 28, No 2 (2024): CARDIOLOGY
- Pages: 265-281
- Section: IMMUNOLOGY
- URL: https://journals.rudn.ru/medicine/article/view/39720
- DOI: https://doi.org/10.22363/2313-0245-2024-28-1-265-281
- EDN: https://elibrary.ru/ZRPYXI
Cite item
Full Text
Abstract
Relevance. Hemorrhagic fever with renal syndrome (HFRS) is a natural focal viral infection with a high probability of severe course, the possibility of death, a long recovery period after infection, low effectiveness of therapy and vaccine prevention. In the Russian Federation, HFRS is most often caused by the Puumala orthohantavirus. The aim of the study — to evaluate the immunophenotypic composition of lymphocytes and cytokine profile in the blood of patients with hemorrhagic fever with renal syndrome in comparison with acute respiratory viral infections and with the prospect of developing immunological criteria for early diagnosis of HFRS. Matherials and Methods. There were examined the blood of 24 patients with a verified diagnosis of HFRS who were hospitalized in the infectious diseases department of the Samara Medical University Clinics and admitted in the first days of the disease, 18 patients with acute respiratory viral infections of established etiology, as well as 15 healthy people. Results and Discussion. Analysis of the results of lymphocyte phenotyping and cytokine levels in the blood revealed that the percentage of B lymphocytes in the blood was >12.6 %, cytotoxic CD8+ T lymphocytes expressing the activating lectin receptor NKG2D (CD3+CD8+CD314+), >25 %, regulatory T cells with CD3+CD4+FoxP3+ phenotypes >7.8 % and CD3+CD8+FoxP3+ >9.5 %, as well as IL-6 >24 pg/ml, TNFß >55 pg/ml, IL-10 <11.3 pg/ml with high diagnostic significance, judging by the results of ROC analysis, indicates in favor of GLPS, but not ARVI. Conclusion. The results obtained can be used as criteria for early immunodiagnosis of HFRS. The development of a new hypothesis on the mechanism of CD8+ immunological memory formation may contribute to the discovery of new potential targets for HFRS immunotherapy and the creation of new principles for the production of vaccine preparations for the prevention of this disease.
Full Text
Table 1 Relative blood abundance of different phenotype lymphocytes in the early stages of HFRS and in comparison groups
Lymphocyte phenotypic parameters (%) | Median (minimum; maximum) | p1 | ||
HFRS рatients n = 24 | ARVI рatients (comparison group 1) n = 18 | Healthy people (comparison group 2) n = 15 | ||
B cells, CD19+ | 13.6 | 11.3 | 10.5 | 0.039* 0.044* 0.046* |
Т cells, CD3+ | 68.0 | 73.5 | 75.0 | 0.338 0.053 0.881 |
Activated Т cells, CD3+CD25+ | 4.8 | 4.0 | 7.5 | 0.026* 0.164 0.707 |
T helper cells, CD3+CD4+ | 36.8 | 40.0 | 41.0 | 0.737 0.289 0.858 |
Cytotoxic T-lymphocytes (CTLs), CD3+CD8+ | 26.0 | 28.3 | 28.0 | 0.950 0.754 0.929 |
NKG2D+ CTLs, CD3+CD8+CD314+ | 30.6 | 21.8 | 12.6 | 0.031* <0.001*** 0.003** |
CD4+ regulatory T cells, CD3+CD4+FoxP3+ | 10.7 | 7.7 | 3.05 | 0.034* <0.001*** 0.044* |
CD8+ regulatory T cells, CD3+CD8+FoxP3+ | 13.0 | 7.3 | 0.45 | 0.008** <0.001*** 0.001** |
NКТ‑like cells, CD3+CD56+ | 4.7 | 5.0 | 3.4 | 0.231 0.169 0.233 |
Natural killer cells (NK), CD3–СD16+CD56+ | 17.0 | 21.5 | 12.9 | 0.022* 0.001** 0.049* |
NKG2D+ NК, CD16+CD56+CD314+ | 6.7 | 10.4 | 9.6 | 0.068 0.118 0.254 |
Note: n — the number of persons in the group; p1 — probability of differences in HFRS and healthy people groups; p2 — probability of differences in ARVI and healthy people groups; p3 — probability of differences in HFRS and ARVI groups; significance of Mann-Whitney differences: * at p<0.05, ** at p<0.01, *** at p < 0.001.
Fig. 1. 95 % confidence intervals of B cell and natural killer cell percentages among blood lymphocytes in the study groups
and ROC curves of their prognostic value
Fig. 2. 95 % confidence intervals of NKG2D+ CTL, СD4+ and CD8+ regulatory T cell percentages among blood lymphocytes in the study groups and ROC curves of their prognostic value
Table 2 Serum levels of pro-inflammatory and anti-inflammatory cytokines in the early stages of HFRS and in comparison groups
Cytokines tested (pg/mL) | Median (minimum; maximum) | p1 | ||
HFRS рatients n = 24 | ARVI рatients (comparison group 1) n = 18 | Healthy people (comparison group 2) n = 15 | ||
IL-4 | 1,5 | 2,0 | 2,2 | 0,002** 0,284 0,053 |
IL-12 | 12,1 | 12,0 | 9,1 | 0,036* 0,041* 0,918 |
IFNγ | 86,5 | 81,4 | 40,8 | <0,001*** 0,004** 0,703 |
IL-1β | 2,4 | 2,6 | 3,8 | 0,003** 0,008** 0,237 |
IL-6 | 25,9 | 20,6 | 6,2 | <0,001*** 0,003** 0,047* |
TNFα | 3,0 | 2,9 | 2,0 | 0,021* 0,043* 0,513 |
TNFβ | 52,3 | 48,4 | 1,4 | <0,001*** <0,001*** 0,041* |
IL-10 | 14,8 | 9,0 | 6,8 | <0,001*** 0,005** 0,026* |
Note: n — the number of persons in the group; p1 — probability of differences in HFRS and healthy people groups; p2 — probability of differences in ARVI and healthy people groups; p3 — probability of differences in HFRS and ARVI groups; significance of Mann-Whitney differences: * at p<0.05, ** at p<0.01, *** at p<0.001.
Fig. 3. 95 % confidence intervals of IL‑6, TNFβ, IL‑10 levels (pg/ml) in the serums of study group patients and ROC curves of their prognostic value
Fig. 4. Significant correlations between informative immunological signs in the early stages of HFRS and in the comparison group (ARVI)
About the authors
Michail F. Ivanov
Samara State Medical Uniiversity
Author for correspondence.
Email: m.f.ivanov@samsmu.ru
ORCID iD: 0000-0002-2528-0091
SPIN-code: 2195-3768
Samara, Russian Federation
Irina P. Balmasova
Russian University of Medcine
Email: m.f.ivanov@samsmu.ru
ORCID iD: 0000-0001-8194-2419
SPIN-code: 8025-8611
Moscow, Russian Federation
Elena S. Malova
Reaviz Medical University
Email: m.f.ivanov@samsmu.ru
ORCID iD: 0000-0001-5710-3076
SPIN-code: 8207-7835
Samara, Russian Federation
Dmitriy Yu. Konstantinov
Samara State Medical Uniiversity
Email: m.f.ivanov@samsmu.ru
ORCID iD: 0000-0002-6177-8487
SPIN-code: 3061-8265
Samara, Russian Federation
References
- Borodina ZhI, Tsarenko OE, Monakhov KM, Bagautdinova LI. Hemorrhagic fever with renal syndrome - a problem of modernity. Archive of Internal Medicine, 2019;6:419-427. doi: 10.20514/2226-6704-2019-9-6-419-427. (In Russian).
- Avsic-Zupanc T, Saksida A, Korva M. Hantavirus infections. Clin Microbiol Infect. 2019;21S:6-16. doi: 10.1111/1469-0691.12291
- Tkachenko E, Kurashova S, Balkina A, Ivanov A, Egorova M, Leonovich O, Popova Yu, Teodorovich R, Belyakova A, Tkachenko P, Trankvilevsky D, Blinova E, Ishmukhametov A, Dzagurova T. Cases of hemorrhagic fever with renal syndrome in Russia during 2000-2022. Viruses. 2023;15(7):1537. doi: 10.3390/v15071537
- Supotnitskiy MV. Viral hemorrhagic fevers. In: Biological War. Introduction to the Epidemiology of Artificial Epidemic Processes and Biological Lesions. Moscow: Chair, Russian Panorama. 2013:887-927. (In Russian).
- Jiang H, Wang LM, Wang PZ, Bai XF. Hemorrhagic fever with renal syndrome: pathogenesis and clinical picture. Front Cell Infect Microbiol. 2016;6:1-14. doi: 10.3389/fcimb.2016.00001
- Liu R, Ma H, Shu J, Zhang Q, Han M, Liu Z, Jin X, Zhang F, Wu X. Vaccines and Therapeutics Against Hantaviruses. Front Microbiol. 2020;10:2989. doi: 10.3389/fmicb.2019.02989
- Guterres A, de Oliveira CR, Fernandes J, de Lemos RSE. The mystery of the phylogeographic structural pattern in rodent-borne hantaviruses. Mol Phylogenet Evol. 2019;136:35-43. doi: 10.1016/j.ympev.2019.03.020
- Morozov VG, Ishmukhametov AA, Dzagurova TK, Tkachenko EA. Clinical features of hemorrhagic fever with renal syndrome in Russia. Infectious diseases. 2017;(5):156-161. doi: 10.21518/2079-701x-2017-5-156-161. (In Russian).
- Manigold T, Vial Р. Human hantavirus infections: epidemiology, clinical features, pathogenesis and immunology. Swiss Med Wkly. 2014;144:13937-13955. doi: 10.4414/smw.2014.13937
- Klingström J, Smed-Sörensen A, Maleki KT, Solà-Riera C, Ahlm C, Björkström NK, Ljunggren HG. Innate and adaptive immune responses against human Puumala virus infection: immunopathogenesis and suggestions for novel treatment strategies for severe hantavirus-associated syndromes. J Intern Med. 2019;285(5):510-523. doi: 10.1111/joim.12876
- Terajima M, Hendershot 3rd, JD, Kariwa H, Koster FT, Hjelle B, Goade D, DeFronzo MC, Ennis FA. High levels of viremia in patients with the hantavirus pulmonary syndrome. J Infect Dis. 1999;180(6):2030-2034. doi: 10.1086/315153
- Vereta LA, Elisova TD, Voronkova GM, Mzhelskaya TV. Method of early diagnosis of hemorrhagic fever with renal syndrome. Patent RU 2683955, publ. 2019-04-03. (In Russian).
- Ivanov MF, Balmasova IP, Zhestkov AV, Konstantinov DYu, Malova ES. Expression of NKG2D by cytotoxic T-lymphocytes as a possible mechanism of immunopathogenesis of hemorrhagic fever with renal syndrome. Immunologiya. 2023;44(1):93-102. doi: 10.33029/0206-4952-2023-43-1-93-102. (In Russian). [
- Habibzadeh F, Habibzadeh P, Yadollahie M. On determining the most appropriate test cut-off value: the case of tests with continuous results. Biochem Med (Zagreb). 2016;26(3):297-307. doi: 10.11613/BM.2016.034
- Scholz S, Baharom F, Rankin G, Maleki KT, Gupta S, Vangeti S, Pourazar J, Discacciati A, Höijer J, Bottai M, Björkström NK, Rasmuson J, Evander M, Blomberg A, Ljunggren H-G, Klingström J, Ahlm C, Smed-Sörensen A. Human hantavirus infection elicits pronounced redistribution of mononuclear phagocytes in peripheral blood and airways. PLoS Pathog. 2017;13(6): e1006462. doi: 10.1371/journal.ppat.1006462
- Stoltz M, Ahlm C, Lundkvist A, Klingström J. Lambda interferon (IFN-lambda) in serum is decreased in hantavirus-infected patients, and in vitro-established infection is insensitive to treatment with all IFNs and inhibits IFN-gamma-induced nitric oxide production. J Virol. 2007;81(16):8685-8691. doi: 10.1128/JVI.00415-07
- Linderholm M, Ahlm C, Settergren B, Waage A, Tärnvik A. Elevated plasma levels of tumor necrosis factor (TNF)-alpha, soluble TNF receptors, interleukin (IL)-6, and IL-10 in patients with hemorrhagic fever with renal syndrome. J Infect Dis. 1996;173(1):38-43. doi: 10.1093/infdis/173.1.38
- Flippe L, Bézie S, Anegon I, Guillonneau C. Future prospects for CD8+ regulatory T cells in immune tolerance. Immunol Rev. 2019;292(1):209-224. doi: 10.1111/imr.12812
- Maes P, Clement J, Groeneveld PH, Colson P, Huizinga TWJ, van Ranst M. Tumor necrosis factor-α genetic predisposing factors can influence clinical severity in nephropathia epidemica. Viral Immunol. 2006;19(3):558-564. doi: 10.1089/vim.2006.19.558
- Koivula TT, Tuulasvaara A, Hetemäki L, Mäkelä SM, Mustonen J, Sironen T, Vaheri A, Arstila TP. Regulatory T cell response correlates with the severity of human hantavirus infection. J Infec. 2014;68(4):387-394. doi: 10.1016/j.jinf.2013.11.007
- Arpaia N, Green JA, Moltedo B, Arvey A, Hemmers S, Yuan S, Treuting PM, Rudensky AY. A distinct function of regulatory T cells in tissue protection. Cell. 2015;162(5):1078-1089. doi: 10.1016/j.cell.2015.08.021
- Fan W, Liu X, Yue J. Determination of urine tumor necrosis factor, IL-6, IL-8, and serum IL-6 in patients with hemorrhagic fever with renal syndrome. Braz J Infect Dis. 2012;16(6):527-530. doi: 10.1016/j.bjid.2012.10.002
- Lee G-Y, Kim W-K, No JS, Yi Y, Park HC, Jung J, Cho S, Lee J, Lee S-H, Park K, Kim J, Song J-W. Clinical and immunological predictors of hemorrhagic fever with renal syndrome outcome during the early phase. Viruses. 2022;14(3):595. doi: 10.3390/v14030595