Spleen white pulp structural and cellular composition in experimental furosemide-­induced hypomagnesemia

Abstract

Relevance. Magnesium deficiency in the blood (hypomagnesemia) is due to many reasons, among which loop diuretics (furosemide) occupy a certain place. The role of the spleen in this process has not been determined. The aim of the work was to elucidate the effect of furosemide-­induced hypomagnesemia on the immune structures of the white pulp of rat spleen. Materials and Methods. Furosemide (Lasix® Aventis Pharma Ltd, India) was injected daily intraperitoneally at a dose of 30 mg/kg to the experimental group of white outbred rats for 6 days, animals of the control group received an injection of 0.9% NaCl. Investigated: blood serum for the content of magnesium, calcium, sodium and iron; serial sections of the white pulp of the spleen after staining with hematoxylin and eosin to assess the structure and azure-­II-eosin to assess the cellular composition. With a microscope magnification of 280 times, the ratio (in %) of primary (PLNS) and secondary lymphoid nodules of the spleen (SLNS) was calculated, the following were measured (µm): the diameter of the germinal center (GC), the width of the mantle and marginal zone, the diameter of the periarteriolar lymphoid sheath (PALS). In GC, the peripheral zone of lymphoid nodules, PALS at a magnification of 1500 times per field of view (100 μm2) was counted and presented as a percentage of the number of lymphocytes; macrophages; cells, mitotic and apoptotic elements. Morphometric analysis was carried out using Image ProPlus 6.0 software (Media Cybernetics, USA). Statistical processing was carried out using the Statistica 10.0 software package with the determination of the arithmetic mean (M) and its error (m). Results and Discussion. The administration of furosemide led to a decrease in magnesium in the blood serum by 1.6 times (p < 0.05). In the white pulp of the spleen of animals of the experimental group, the proportion of SLNS decreased by 18.14%, the number of SLNS increased by 42.5% (p < 0.05). The diameter of SLNS increased insignificantly, the diameter of GC and the width of the marginal zone significantly increased by 27.1 and 24.8%, respectively. The proportion of macrophages increased by 20.6% in GC SLNS, and by 17.0% in PALS. The highest increase in the proportion of cells with signs of apoptosis was found in the periarteriolar lymphoid sheath of experimental animals - 34.6% (p < 0.05). Conclusion. Furosemide loading causes the development of dyselementosis, with the most significant loss of magnesium (hypomagnesemia) and has a pronounced effect on the immune parameters of the spleen, represented by white pulp structures. Therefore, correction of the elemental status and monitoring of the state of the spleen in hypomagnesemia caused by the use of loop diuretics is a necessary element in the prevention of complications associated with the use of diuretic drugs.

About the authors

Marina V. Smetanina

Izhevsk State Medical Academy

Email: mig05@inbox.ru
ORCID iD: 0000-0002-1801-5353
SPIN-code: 9437-0083
Izhevsk, Russian Federation

Natalya N. Chuchkova

Izhevsk State Medical Academy

Author for correspondence.
Email: mig05@inbox.ru
ORCID iD: 0000-0001-7777-6825
SPIN-code: 7291-0160
Izhevsk, Russian Federation

Natalya V. Kormilina

Izhevsk State Medical Academy

Email: mig05@inbox.ru
ORCID iD: 0000-0002-2885-5882
SPIN-code: 4072-0220
Izhevsk, Russian Federation

Ksenia A. Pazinenko

Izhevsk State Medical Academy

Email: mig05@inbox.ru
ORCID iD: 0000-0002-3390-4343
SPIN-code: 4421-9206
Izhevsk, Russian Federation

References

  1. Redfield MM, Borlaug BA. Heart Failure With Preserved Ejection Fraction: A Review. JAMA. 2023;329(10):827-838. doi: 10.1001/jama.2023.2020
  2. Kurlykina NV, Seredenina EM, Orlova Ia A. Use of loop diuretics in heart failure: Current aspects. Terapevticheskii Arkhiv. 2017;89(9):115-119. (In Russian).
  3. Cheng HW, Sham MK, Chan KY, Li CW, Au HY, Yip T. Combination therapy with low-dose metolazone and furosemide: a «needleless» approach in managing refractory fluid overload in elderly renal failure patients under palliative care. Int Urol Nephrol. 2014;46(9):1809-1813. doi: 10.1007/s11255-014-0724-z
  4. McMahon BA, Chawla LS. The furosemide stress test: current use and future potential. Ren Fail. 2021;43(1):830-839. doi: 10.1080/0886022X.2021.1906701
  5. Ellison DH, Maeoka Y, McCormick JA. Molecular Mechanisms of Renal Magnesium Reabsorption. J Am Soc Nephrol. 2021;32(9):2125-2136. doi: 10.1681/ASN.2021010042.
  6. Joannidis M, Klein SJ, Ostermann M. 10 myths about furosemide. Intensive Care Med. 2019;45(4):545-548. doi: 10.1007/s00134-018-5502-4
  7. Gromova OA. Torshin IYu. Magnesium and «diseases of civilization.» Moscow: GEOTAR. 2018. 799 p. (In Russian).
  8. Agus Z.S. Mechanisms and causes of hypomagnesemia. Curr Opin Nephrol Hypertens. 2016;25(4):301-307. doi: 10.1097/MNH.0000000000000238. PMID: 27219040.
  9. Dos Santos LRSSR, de Freitas Santos A Júnior, das Graças Andrade Korn M. Effects of furosemide administration on the concentration of essential and toxic elements in Wistar rats by inductively coupled plasma optical emission spectrometry. J Trace Elem Med Biol. 2018;48:25-29. doi: 10.1016/j.jtemb.2018.02.029.
  10. Chuchkova NN, Kanunnikova OM, Smetanina MV. Bioelement composition of organs of experimental animals under furosemide load. Trace elements in medicine. 2019;20(4):51-56. (In Russian).
  11. Tseng MH, Konrad M, Ding JJ, Lin SH. Clinical and genetic approach to renal hypomagnesemia. Biomed J. 2022;45(1):74-87. doi: 10.1016/j.bj.2021.11.002
  12. Guerrero-­Romero F, Mercado M, Rodriguez-­Moran M, Ramírez-­Renteria C, Martínez-­Aguilar G, Marrero-­Rodríguez D. Magnesium-to-­Calcium Ratio and Mortality from COVID-19. Nutrients. 2022;14(9):1686. doi: 10.3390/nu14091686
  13. Liu M, Dudley SC. Jr. Magnesium, Oxidative Stress, Inflammation, and Cardiovascular Disease. Antioxidants (Basel). 2020;9(10):907. doi: 10.3390/antiox9100907
  14. Sepiashvili RI, Shubich MG, Kolesnikova NV, Slavyanskaya TA, Lomtatidze LV. Apoptosis in immunological processes. Allergology and Immunology. 2015;16(1):101-107. (In Russian).
  15. Smirnov AV, Schmidt MV, Panshin NG, Evsyukov OYu, Evtushenko AM. Morphological changes in the organs of the immune system of rats during experimental modeling of magnesium deficiency. Volgograd Scientific Medical Journal. 2011;32(4):8-10. (In Russian).
  16. Spasov AA, Ozerov AA, Iezhitsa IN, Kharitonova MV, Kravchenko MS, Zheltova AA. Comparative correction of furosemide hypomagnesemia with various stereoisomers of organic magnesium salts. Bulletin of Experimental Biology and Medicine. 2011; 3:308-310. (In Russian).
  17. Volkov VP. New algorithm for morphometric assessment of functional immunomorphology of the spleen. Universum: medicine and pharmacology. 2015;5-6(18). https://cyberleninka.ru/article/n/novyy-­algoritm-morfometricheskoy-­otsenki-funktsionalnoy-­immunomorfologii-selezyonki (Date of access: 23.05.2023). (In Russian).
  18. Katopodis P, Karteris E, Katopodis KP. Pathophysiology of Drug-­Induced Hypomagnesaemia. Drug Saf. 2020;43(9):867-880. doi: 10.1007/s40264-020-00947-y.
  19. van Angelen AA, van der Kemp AW, Hoenderop JG, Bindels RJ. Increased expression of renal TRPM6 compensates for Mg(2+) wasting during furosemide treatment. Clin Kidney J. 2012;5(6):535-544. doi: 10.1093/ckj/sfs140
  20. Rosner MH, Ha N, Palmer BF, Perazella MA. Acquired Disorders of Hypomagnesemia. Mayo Clin Proc. 2023;98(4):581-596. doi: 10.1016/j.mayocp.2022.12.002.
  21. Sepiashvili RI. Functional system of immune homeostasis. Allergology and Immunology. 2003;4(2):5-14. (In Russian).
  22. Weyh C, Krüger K, Peeling P, Castell L. The Role of Minerals in the Optimal Functioning of the Immune System. Nutrients. 2022;14(3):644. doi: 10.3390/nu14030644
  23. Sugimoto J, Romani AM, Valentin-­Torres AM, Luciano AA, Ramirez Kitchen CM. Magnesium decreases inflammatory cytokine production: a novel innate immunomodulatory mechanism. J Immunol. 2012;188(12): 6338-6346. doi: 10.4049/jimmunol.1101765
  24. Bessa-­Gonçalves M, Silva AM, Brás JP, Helmholz H, Luthringer-­Feyerabend BJC, Willumeit-­Römer R. Fibrinogen and magnesium combination biomaterials modulate macrophage phenotype, NF-kB signaling and crosstalk with mesenchymal stem/stromal cells. Acta Biomater. 2020;114:471-484. doi: 10.1016/j.actbio.2020.07.028
  25. Hang R, Tian X, Qu G, Zhao Y, Yao R, Zhang Y. Exosomes derived from magnesium ion-stimulated macrophages inhibit angiogenesis. Biomed Mater. 2022;17(4). doi: 10.1088/1748-605X/ac6b03
  26. Filipowska J, Tomaszewski KA, Niedźwiedzki Ł, Walocha JA, Niedźwiedzki T. The role of vasculature in bone development, regeneration and proper systemic functioning. Angiogenesis. 2017;20(3):291-302. doi: 10.1007/s10456-017-9541-1
  27. Locatelli L, Fedele G, Castiglioni S, Maier J.A. Magnesium Deficiency Induces Lipid Accumulation in Vascular Endothelial Cells via Oxidative Stress-­The Potential Contribution of EDF-1 and PPARγ. Int J Mol Sci. 2021;22(3):1050. doi: 10.3390/ijms22031050
  28. Maier JA, Castiglioni S, Locatelli L, Zocchi M, Mazur A. Magnesium and inflammation: Advances and perspectives. Semin Cell Dev Biol. 2021;115:37-44. doi: 10.1016/j.semcdb.2020.11.002
  29. Fritzen R, Davies A, Veenhuizen M, Campbell M, Pitt SJ, Ajjan RA. Magnesium Deficiency and Cardiometabolic Disease. Nutrients. 2023;15(10):2355. doi: 10.3390/nu15102355
  30. Vlieg-­Boerstra B, de Jong N, Meyer R, Agostoni C, De Cosmi V, Grimshaw K. Nutrient supplementation for prevention of viral respiratory tract infections in healthy subjects: A systematic review and meta-analysis. Allergy. 2022;77(5):1373-1388. doi: 10.1111/all.15136

Copyright (c) 2024 Smetanina M.V., Chuchkova N.N., Kormilina N.V., Pazinenko K.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies