Carboxypeptidase A3 in the structure of the protease phenotype of mast cells: cytophysiological aspects

Cover Page

Cite item


Carboxypeptidase A3 (CPA3) is a specific protease of mast cells (MC) with variable expression and appears to be one of the preformed components of the secretome. CPA3 is involved in regulation of the state of a specifi tissue microenvironment and components of the integrative-buffer metabolic environment in adaptive and pathological processes; it affects implementation of the innate immunity, mechanisms of angiogenesis, processes of the extracellular matrix remodeling, etc. CPA3 identification using protocols of multiplex immunohistochemistry allows specifying details of the organ-specific mast cell population features, including the protease phenotype, mechanisms of biogenesis with cytoand histotopographic criteria, and features of secretory pathways. Numerous biological effects of CPA3, including participation in the regulation of the pulmonary parenchyma and systemic blood flow, in biogenesis and remodeling of the fibrous component of the extracellular matrix, in epigenetic reprogramming, determine the importance of fundamental investigation of the physiological activity of protease and its involvement in the implementation of pathological processes. Further studies will contribute to the detection of the translational value of the mast cell CPA3 expression features as a prognostic factor and a promising molecular target for treatment of socially significant diseases.

About the authors

Dmitrii A. Atiakshin

Peoples’ Friendship University of Russia; Voronezh N.N. Burdenko State Medical University

Author for correspondence.
ORCID iD: 0000-0002-8347-4556
Moscow, Russian Federation; Voronezh, Russian Federation

Andrey A. Kostin

Peoples’ Friendship University of Russia

ORCID iD: 0000-0002-0792-6012
Moscow, Russian Federation

Ivan D. Trotsenko

Peoples’ Friendship University of Russia

ORCID iD: 0000-0002-6667-0125
Moscow, Russian Federation

Victoria V. Shishkina

Voronezh N.N. Burdenko State Medical University

ORCID iD: 0000-0001-9185-4578
Voronezh, Russian Federation

Markus Tiemann

Institute for Hematopathology

ORCID iD: 0000-0002-6499-4855
Hamburg, Germany

Igor B. Buchwalow

Institute for Hematopathology

ORCID iD: 0000-0003-1142-7483
Hamburg, Germany


  1. Wernersson S, Pejler G. Mast cell secretory granules: armed for battle. Nat Rev Immunol. 2014;14(7):478-494.
  2. Redegeld FA, Kumari S, Charles N, Blank U. Non-IgE mediated mast cell activation. Immunol Rev. 2018;282(1):87-113.
  3. Aponte-López A, Muñoz-Cruz S. Mast Cells in the Tumor Microenvironment. Adv Exp Med Biol. 2020;1273:159-173. doi: 10.1007/978-3-030-49270-0_9
  4. Elieh Ali Komi D, Wöhrl S, Bielory L. Mast Cell Biology at Molecular Level: a Comprehensive Review. Clin Rev Allergy Immunol. 2020;58(3):342-365. doi: 10.1007/s12016-019-08769-2
  5. Kolkhir P, Elieh-Ali-Komi D, Metz M, Siebenhaar F, Maurer M. Understanding human mast cells: lesson from therapies for allergic and non-allergic diseases. Nat Rev Immunol. 2021. doi: 10.1038/ s41577-021-00622-y
  6. Elieh Ali Komi D, Kuebler WM. Significance of Mast Cell Formed Extracellular Traps in Microbial Defense. Clin Rev Allergy Immunol. 2021;22:1-20. doi: 10.1007/s12016-021-08861-6
  7. Dahlin JS, Maurer M, Metcalfe DD, Pejler G, SagiEisenberg R, Nilsson G. The ingenious mast cell: Contemporary insights into mast cell behavior and function. Allergy. 2021;77(16):83-99. doi: 10.1111/all.14881
  8. Paivandy A, Pejler G. Novel Strategies to Target Mast Cells in Disease. J Innate Immun. 2021;13(3):131-147. doi: 10.1159/000513582
  9. Ribatti D, Annese T, Tamma R. Controversial role of mast cells in breast cancer tumor progression and angiogenesis. Clin Breast Cancer. 2021; S:1526-8209. doi: 10.1016/j.clbc.2021.08.010
  10. Crivellato E, Travan L, Ribatti D. The Phylogenetic Profile of Mast Cells. Mast Cells: Methods and Protocols. Methods in Molecular Biology. 2015;1220:11-27.
  11. Ribatti D. The development of human mast cells. An historical reappraisal. Exp. Cell Res. 2016; 342:210-215.
  12. Valent P, Akin C, Hartmann K, Nilsson G, Reiter A, Hermine O, Sotlar K, Sperr WR, Escribano L, George TI, Kluin-Nelemans HC, Ustun C, Triggiani M, Brockow K, Gotlib J, Orfao A, Kovanen PT, Hadzijusufovic E, Sadovnik I, Horny HP, Arock M, Schwartz LB, Austen KF, Metcalfe DD, Galli SJ. Mast cells as a unique hematopoietic lineage and cell system: From Paul Ehrlich’s visions to precision medicine concepts. Theranostics. 2020;10(23):10743-10768. doi: 10.7150/thno.46719
  13. Galli SJ, Tsai M, Marichal T, Tchougounova E, Reber LL, Pejler G. Approaches for analyzing the roles of mast cells and their proteases in vivo. Adv Immunol. 2015;126:45-127.
  14. Mukai K, Mindy Tsai M. Saito H, Galli SJ. Mast cells as sources of cytokines, chemokines, and growth factors. Immunological Reviews. 2018;282:121-150.
  15. Pejler G, Åbrink M, Ringvall M, Wernersson S. Mast cell proteases Adv Immunol. 2007;95:167-255.
  16. Pejler G, Rönnberg E, Waern I, Wernersson S. Mast cell proteases: multifaceted regulators of inflammatory disease. Blood. 2010;115(24):4981-4990.
  17. Pejler G, Knight SD, Henningsson F, Wernersson S. Novel insights into the biological function of mast cell carboxypeptidase A. Trends Immunol. 2009;30(8):401-8. doi: 10.1016/
  18. Grujic M, Paivandy A, Gustafson AM, Thomsen AR, Öhrvik H, Pejler G. The combined action of mast cell chymase, tryptase and carboxypeptidase A3 protects against melanoma colonization of the lung. Oncotarget. 2017;8(15):25066-25079. doi: 10.18632/ oncotarget.15339
  19. Grujic M, Hellman L, Gustafson AM, Akula S, Melo FR, Pejler G. Protective role of mouse mast cell tryptase Mcpt6 in melanoma. Pigment Cell Melanoma Res. 2020;33(4):579-590. doi: 10.1111/pcmr.12859
  20. Siddhuraj P, Clausson CM, Sanden C, Alyamani M, Kadivar M, Marsal J, Wallengren J, Bjermer L, Erjefält JS. Lung Mast Cells Have a High Constitutive Expression of Carboxypeptidase A3 mRNA That Is Independent from Granule-Stored CPA3. Cells. 2021;10(2):309. doi: 10.3390/cells10020309
  21. Akula S, Hellman L, Avilés FX, Wernersson S. Analysis of the mast cell expressed carboxypeptidase A3 and its structural and evolutionary relationship to other vertebrate carboxypeptidases. Dev Comp Immunol. 2021;127:104273. doi: 10.1016/j.dci.2021.104273
  22. Lundequist A, Tchougounova E, Åbrink M, Pejler G. Cooperation between Mast Cell Carboxypeptidase A and the Chymase Mouse Mast Cell Protease 4 in the Formation and Degradation of Angiotensin II. J. Biol. Chem. 2004;279:32339-32344.
  23. Schneider LA, Schlenner SM, Feyerabend TB, Wunderlin M, Rodewald HR. Molecular mechanism of mast cell mediated innate defense against endothelin and snake venom sarafotoxin. J Exp Med. 2007;204(11):2629-39. doi: 10.1084/jem.20071262
  24. Scandiuzzi L, Beghdadi W, Daugas E, Åbrink M, Tiwari N, Brochetta C, Claver J, Arouche N, Zang X, Pretolani M, et al. Mouse Mast Cell Protease-4 Deteriorates Renal Function by Contributing to Inflammation and Fibrosis in Immune Complex-Mediated Glomerulonephritis. J. Immunol. 2010;185:624-633.
  25. Tanco S, Lorenzo J, Garcia-Pardo J, Degroeve S, Martens L, Aviles FX, Gevaert K, Van Damme P. Proteome-derived peptide libraries to study the substrate specifi profi of carboxypeptidases. Mol Cell Proteomics. 2013;12(8):2096-110. doi: 10.1074/mcp.M112.023234
  26. Xing D, Zhang R, Li S, Huang P, Luo C, Hei Z, Xia Z, Gan X. Pivotal role of mast cell carboxypeptidase A in mediating protection against small intestinal ischemia-reperfusion injury in rats after ischemic preconditioning. J Surg Res. 2014;192(1):177-86. doi: 10.1016/j.jss.2014.05.050
  27. Sverrild A, Bergqvist A, Baines KJ, Porsbjerg C, Andersson CK, Thomsen SF, Hoffmann HJ, Gibson P, Erjefalt JS, Backer V. Airway responsiveness to mannitol in asthma is associated with chymase-positive mast cells and eosinophilic airway infl Clin. Exp. Allerg.y 2016;46:288-297.
  28. Kovanen PT, Bot I. Mast cells in atherosclerotic cardiovascular disease -Activators and actions. Eur. J. Pharmacol. 2017;816:37-46.
  29. Ramirez-Garcia Luna JL, Chan D, Samberg R, Abou-Rjeili M, Wong TH, Li A, Feyerabend TB, Rodewald HR, Henderson JE, Martineau PA. Defective bone repair in mast cell-deficient Cpa3Cre/+ mice. PLoS One. 2017 Mar 28;12(3): e0174396. doi: 10.1371/journal. pone.0174396
  30. Dellon ES, Selitsky SR, Genta RM, Lash RH, Parker JS. Gene expression-phenotype associations in adults with eosinophilic esophagitis. Dig. Liver Dis. 2018;50:804-811.
  31. Sallis BF, Acar U, Hawthorne K, Babcock SJ, Kanagaratham C, Goldsmith JD, Rosen R, Vanderhoof JA, Nurko S, Fiebiger EA. Distinct Esophageal mRNA Pattern Identifies Eosinophilic Esophagitis Patients with Food Impactions. Front. Immunol. 2018;9:2059.
  32. Fricker M, Gibson PG, Powell H, Simpson JL, Yang IA, Upham JW, Reynolds PN, Hodge S, James AL, Jenkins C. A sputum 6-gene signature predicts future exacerbations of poorly controlled asthma. J. Allergy Clin. Immunol. 2019;144:51-60.
  33. Lewicki Ł, Siebert J, Koliński T, Piekarska K, ReiwerGostomska M, Targoński R, Trzonkowski P, Marek-Trzonkowska N. Mast cell derived carboxypeptidase A3 is decreased among patients with advanced coronary artery disease. Cardiol J. 2019;26(6):680-686. doi: 10.5603/CJ.a2018.0018
  34. Wu B, Tao L, Yang D, Li W, Xu H, He Q. Development of an Immune Infiltration-Related Eight-Gene Prognostic Signature in Colorectal Cancer Microenvironment. BioMed Res. Int. 2020;1:1-43.
  35. Yan Z, Liu L, Jiao L, Wen X, Liu J, Wang N. Bioinformatics Analysis and Identifi ation of Underlying Biomarkers Potentially Linking Allergic Rhinitis and Asthma. Med. Sci. Monit. 2020;26: e924934.
  36. Collins MH, Martin LJ, Wen T, Abonia JP, Putnam PE, Mukkada VA, Rothenberg ME. Eosinophilic Esophagitis Histology Remission Score: Significant Relations to Measures of Disease Activity and Symptoms. J Pediatr Gastroenterol Nutr. 2020;70(5):598-603. doi: 10.1097/MPG.0000000000002637
  37. Xu C, Yan S, Guo Y, Qiao L, Ma L, Dou X, Zhang B. Lactobacillus casei ATCC 393 alleviates Enterotoxigenic Escherichia coli K88-induced intestinal barrier dysfunction via TLRs/mast cells pathway. Life Sci. 2020;244:117281. doi: 10.1016/j.lfs.2020.117281.
  38. Winter NA, Gibson PG, McDonald VM, Fricker M. Sputum Gene Expression Reveals Dysregulation of Mast Cells and Basophils in Eosinophilic COPD. Int J Chron Obstruct Pulmon Dis. 2021;16:2165- 2179. doi: 10.2147/COPD.S 305380
  39. Soria-Castro R, Meneses-Preza YG, Rodríguez-López GM, Romero-Ramírez S, Sosa-Hernández VA, Cervantes-Díaz R, PérezFragoso A, Torres-Ruíz JJ, Gómez-Martín D, Campillo-Navarro M, Álvarez-Jiménez VD, Pérez-Tapia SM, Chávez-Blanco AD, Estrada-Parra S, Maravillas-Montero JL, Chacón-Salinas R. Severe COVID-19 is marked by dysregulated serum levels of carboxypeptidase A3 and serotonin. J Leukoc Biol. 2021;110(3):425-431. doi: 10.1002/JLB.4HI0221-087R
  40. Pejler G, Abrink M, Wernersson S. Serglycin proteoglycan: regulating the storage and activities of hematopoietic proteases. Biofactors. 2009;35(1):61-8. doi: 10.1002/biof.11
  41. Schwartz LB, Irani AM, Roller K, Castells MC, Schechter NM. Quantitation of histamine, tryptase, and chymase in dispersed human T and TC mast cells. J Immunol. 1987;138(8):2611-5.
  42. Caughey GH. Mast cell tryptases and chymases in inflammation and host defense. Immunol Rev. 2007;217:141-54. doi: 10.1111/j.1600-065X.2007.00509.x
  43. Goldstein SM, Kaempfer CE, Kealey JT, Wintroub BU. Human mast cell carboxypeptidase. Purification and characterization. J Clin Invest. 1989;83(5):1630-6. doi: 10.1172/JCI114061
  44. Reynolds DS, Gurley DS, Austen KF. Cloning and characterization of the novel gene for mast cell carboxypeptidase A. J Clin Invest. 1992;89(1):273-82.
  45. Everitt MT, Neurath H. Rat peritoneal mast cell carboxypeptidase: localization, purification, and enzymatic properties. FEBS Lett. 1980;110:292-296.
  46. Goldstein SM, Kaempfer CE, Proud D, Schwartz LB, Irani AM, Wintroub BU. Detection and partial characterization of a human mast cell carboxypeptidase. J Immunol. 1987;139(8):2724-9. PMID: 2443571.
  47. Cole KR, Kumar S, Trong HL, Woodbury RG, Walsh KA, Neurath H. Rat mast cell carboxypeptidase: amino acid sequence and evidence of enzyme activity within mast cell granules. Biochemistry. 1991;30:648-655.
  48. Reynolds DS, Gurley DS, Stevens RL, Sugarbaker DJ, Austen KF, Serafin WE. Cloning of cDNAs that encode human mast cell carboxypeptidase A, and comparison of the protein with mouse mast cell carboxypeptidase A and rat pancreatic carboxypeptidases. Proc Natl Acad Sci USA. 1989;86(23):9480-4. doi: 10.1073/pnas.86.23.9480
  49. Reynolds DS, Stevens RL, Gurley DS, Lane WS, Austen KF, Serafin WE. Isolation and molecular cloning of mast cell carboxypeptidase A. A novel member of the carboxypeptidase gene family. J Biol Chem. 1989;264(33):20094-9.
  50. Li L, Li Y, Reddel SW, Cherrian M, Friend DS, Stevens RL, Krilis SA. Identifi ation of basophilic cells that express mast cell granule proteases in the peripheral blood of asthma, allergy, and drugreactive patients. J Immunol. 1998;161(9):5079-86.
  51. Lutzelschwab C, Pejler G, Aveskogh M, Hellman L. Secretory granule proteases in rat mast cells. Cloning of 10 different serine proteases and a carboxypeptidase A from various rat mast cell populations. J Exp Med. 1997;185(1):13-29. doi: 10.1084/jem.185.1.13
  52. Serafi WE, Dayton ET, Gravallese PM, Austen KF, L. Stevens R. Carboxypeptidase A in mouse mast cells: identification, characterization, and use as a differentiation marker. J. Immuno L. 1987;139:3771-3776.
  53. Serafin WE, Sullivan TP, Conder GA, Ebrahimi A, Marcham P, Johnson SS, Austen KF, Reynolds DS. Cloning of the cDNA and gene for mouse mast cell protease 4. Demonstration of its late transcription in mast cell subclasses and analysis of its homology to subclass-specific neutral proteases of the mouse and rat. J Biol Chem. 1991;266(3):1934-41.
  54. MacDonald AJ, Pick J, Bissonnette EY, Befus AD. Rat mucosal mast cells: the cultured bone marrow-derived mast cell is biochemically and functionally analogous to its counterpart in vivo. Immunology. 1998;93(4):533-9. doi: 10.1046/j.13652567.1998.00465.x
  55. Weidner N, Austen KF. Heterogeneity of mast cells at multiple body sites. Fluorescent determination of avidin binding and immunofl determination of chymase, tryptase, and carboxypeptidase content. Pathol Res Pract. 1993;189(2):156-62. doi: 10.1016/S 0344-0338(11)80086-5
  56. Dougherty RH, Sidhu SS, Raman K, Solon M, Solberg OD, Caughey GH, Woodruff PG, Fahy JV. Accumulation of intraepithelial mast cells with a unique protease phenotype in T(H)2-high asthma. J. Allergy Clin. Immunol. 2010;125:1046-1053.
  57. Takabayashi T, Kato A, Peters AT, Suh LA, Carter R, Norton J, Grammer LC, Tan BK, Chandra RK, Conley DB. Glandular mast cells with distinct phenotype are highly elevated in chronic rhinosinusitis with nasal polyps. J. Allergy Clin. Immunol. 2012;130:410-420.
  58. Abonia JP, Blanchard C, Butz BB, Rainey HF, Collins MH, Stringer KF, Putnam PE, Rothenberg ME. Involvement of mast cells in eosinophilic esophagitis. J. Allergy Clin. Immunol. 2010;126:140-149.
  59. Gurish MF, Ghildyal N, McNeil HP, Austen KF, Gillis S, Stevens RL. Differential expression of secretory granule proteases in mouse mast cells exposed to interleukin 3 and c-kit ligand. J Exp Med. 1992;175(4):1003-12. doi: 10.1084/jem.175.4.1003
  60. Henningsson F, Hergeth S, Cortelius R, Abrink M, Pejler G. A role for serglycin proteoglycan in granular retention and processing of mast cell secretory granule components. FEBS J. 2006;273(21):4901- 12. doi: 10.1111/j.1742-4658.2006.05489.x.
  61. Zon LI, Gurish MF, Stevens RL, Mather C, Reynolds DS, Austen KF, Orkin SH. GATA-binding transcription factors in mast cells regulate the promoter of the mast cell carboxypeptidase A gene. J Biol Chem. 1991;266(34):22948-53.
  62. Dobson JT, Seibert J, Teh EM, Da’as S, Fraser RB, Paw BH, Lin TJ, Berman JN. Carboxypeptidase A5 identifi a novel mast cell lineage in the zebrafi providing new insight into mast cell fate determination. Blood. 2008;112(7):2969-72. doi: 10.1182/ blood-2008-03-145011
  63. Morii E, Tsujimura T, Jippo T, Hashimoto K, Takebayashi K, Tsujino K, Nomura S, Yamamoto M, Kitamura Y. Regulation of mouse mast cell protease 6 gene expression by transcription factor encoded by the mi locus. Blood. 1996;88(7):2488-94.
  64. Tchekneva E, Serafin WE. Kirsten sarcoma virusimmortalized mast cell lines. Reversible inhibition of growth by dexamethasone and evidence for the presence of an autocrine growth factor. J. Immunol. 1994;152:5912-5921.
  65. Eklund KK, Humphries DE, Xia Z, Ghildyal N, Friend DS, Gross V, Stevens RL. Glucocorticoids inhibit the cytokine-induced proliferation of mast cells, the high affinity IgE receptor-mediated expression of TNF-alpha, and the IL-10-induced expression of chymases. J Immunol. 1997;158(9):4373-80.
  66. Dvorak AM. Ultrastructure of human mast cells. Int Arch Allergy Immunol. 2002;127(2):100-5.
  67. Hammel I, Lagunoff D, Galli SJ. Regulation of secretory granule size by the precise generation and fusion of unit granules. J Cell Mol Med. 2010 Jul;14(7):1904-16. doi: 10.1111/j.15824934.2010.01071.x
  68. Robida PA, Puzzovio PG, Pahima H, Levi-Schaffer F, Bochner BS. Human eosinophils and mast cells: Birds of a feather flock together. Immunol Rev. 2018;282(1):151-167. doi: 10.1111/ imr.12638
  69. Vukman KV, Försönits A, Oszvald Á, Tóth EÁ, Buzás EI. Mast cell secretome: Soluble and vesicular components. Semin Cell Dev Biol. 2017;67:65-73.
  70. Arvan P, Castle D. Sorting and storage during secretory granule biogenesis: looking backward and looking forward. Biochem J. 1998;332(Pt3):593-610. doi: 10.1042/bj3320593
  71. Blank U. The mechanisms of exocytosis in mast cells. Adv Exp Med Biol. 2011;716:107-22. doi: 10.1007/978-1-4419-9533-9_7.
  72. De Matteis MA, Luini A. Exiting the Golgi complex. Nat Rev Mol Cell Biol. 2008 Apr;9(4):273-84. doi: 10.1038/nrm2378. PMID: 18354421
  73. Hammel I, Lagunoff D, Krüger PG. Studies on the growth of mast cells in rats. Changes in granule size between 1 and 6 months. Lab Invest. 1988;59(4):549-54.
  74. Kornfeld S, Mellman I. The biogenesis of lysosomes. Annu Rev Cell Biol. 1989;5:483-525. doi: 10.1146/annurev. cb.05.110189.002411
  75. Kolset SO, Tveit H. Serglycin - structure and biology. Cell Mol Life Sci. 2008;65(7-8):1073-85. doi: 10.1007/s00018-007-7455-6.
  76. Rönnbe rg E , Me l o FR, Pe j l e r G. Ma st c e l l proteoglycans. J Histochem Cytochem. 2012;60(12):950-62. doi: 10.1369/0022155412458927
  77. Blank U, Madera-Salcedo IK, Danelli L, Claver J, Tiwari N, Sánchez-Miranda E, Vázquez-Victorio G, Ramírez-Valadez KA, Macias-Silva M, González-Espinosa C. Vesicular traffi king and signaling for cytokine and chemokine secretion in mast cells. Front Immunol. 2014;5:453.
  78. Henningsson F, Ledin J, Lunderius C, Wilén M, Hellman L, Pejler G. Altered storage of proteases in mast cells from mice lacking heparin: a possible role for heparin in carboxypeptidase A processing. Biol Chem. 2002;383(5):793-801. doi: 10.1515/BC.2002.083
  79. Murakami M, Karnik SS, Husain A. Human prochymase activation. A novel role for heparin in zymogen processing. J Biol Chem. 1995 Feb 3;270(5):2218-23.
  80. Abrink M, Grujic M, Pejler G. Serglycin is essential for maturation of mast cell secretory granule. J Biol Chem. 2004;279(39):40897-905. doi: 10.1074/jbc.M405856200
  81. Atiakshin D, Buchwalow I,·Samoilova V, Tiemann M. Tryptase as a polyfunctional component of mast cells. Histochemistry and Cell Biology. 2018;149(5) 461-477.
  82. Atiakshin D, Buchwalow I, Tiemann M. Mast cell chymase: morphofunctional characteristics. Histochem Cell Biol. 2019;152(4):253-269. doi: 10.1007/s00418-019-01803-6
  83. Springman EB, Dikov MM, Serafin WE. Mast cell procarboxypeptidase A. Molecular modeling and biochemical characterization of its processing within secretory granules. J Biol Chem. 1995;270(3):1300-7. doi: 10.1074/jbc.270.3.1300
  84. Henningsson F. Mast cell cathepsins C and S control levels of carboxypeptidase A and the chymase, mouse mast cell protease 5. Biol. Chem. 2003;384;1527-1531.
  85. Henningsson F. A role for cathepsin E in the processing of mast-cell carboxypeptidase A.J. Cell Sci. 2005;118:2035-2042.
  86. Rath-Wolfson L. An immunocytochemical approach to the demonstration of intracellular processing of mast cell carboxypeptidase. Appl Immunohistochem Mol Morphol. 2001 Mar;9(1):81-5.
  87. Dikov MM, Springman EB, Yeola S, Serafin WE. Processing of procarboxypeptidase A and other zymogens in murine mast cells. J Biol Chem. 1994;269(41):25897-904.
  88. Schmidt O, Teis D. The ESCRT machinery. Curr Biol. 2012;22(4): R 116-20. doi: 10.1016/j.cub.2012.01.028
  89. Blair EA, Castle AM, Castle JD. Proteoglycan sulfation and storage parallels storage of basic secretory proteins in exocrine cells. Am J Physiol. 1991;261(5 Pt 1): C 897-905. doi: 10.1152/ ajpcell.1991.261.5.C 897
  90. Atiakshin DA, Shishkina V V, Gerasimova OA, Meshkova VY, Samodurova NY, Samoilenko TV, Buchwalow IB, Samoilova VE, Tiemann M. Combined histochemical approach in assessing tryptase expression in the mast cell population. Acta Histochem. 2021;123(4):151711. doi: 10.1016/j.acthis.2021.151711
  91. Kormelink TG, Arkesteijn GJA, van de Lest CHA, Geerts WJC, Goerdayal SS, Altelaar MAF, Redegeld FA, Nolte Hoen ENM, Wauben MHM. Mast Cell Degranulation Is Accompanied by the Release of a Selective Subset of Extracellular Vesicles That Contain Mast Cell- Specifi Proteases. J. Immunol. 2016;197:3382-3392.
  92. Lecce M, Molfetta R, Milito ND, Santoni A, Paolini R. FcεRI Signaling in the Modulation of Allergic Response: Role of Mast CellDerived Exosomes. Int J Mol Sci. 2020;21(15):5464. doi: 10.3390/ ijms21155464
  93. Raposo G, Tenza D, Mecheri S, Peronet R, Bonnerot C, Desaymard C. Accumulation of major histocompatibility complex class II molecules in mast cell secretory granules and their release upon degranulation. Mol Biol Cell. 1997;8(12):2631-45. doi: 10.1091/ mbc.8.12.2631
  94. Azouz NP, Hammel I, Sagi-Eisenberg R. Characterization of mast cell secretory granules and their cell biology. DNA Cell Biol. 2014;33(10):647-51. doi: 10.1089/dna.2014.2543
  95. Tiwari N, Wang CC, Brochetta C, Ke G, Vita F, Qi Z, Rivera J, Soranzo MR, Zabucchi G, Hong W, Blank U. VAMP-8 segregates mast cell-preformed mediator exocytosis from cytokine trafficking pathways. Blood. 2008;111(7):3665-74. doi: 10.1182/ blood-2007-07-103309
  96. Grimberg E, Peng Z, Hammel I, Sagi-Eisenberg R. Synaptotagmin III is a critical factor for the formation of the perinuclear endocytic recycling compartment and determination of secretory granules size. J Cell Sci. 2003;116(Pt 1):145-54. doi: 10.1242/jcs.00186
  97. Nakazawa S, Sakanaka M, Furuta K, Natsuhara M, Takano H, Tsuchiya S, Okuno Y, Ohtsu H, Nishibori M, Thurmond RL, Hirasawa N, Nakayama K, Ichikawa A, Sugimoto Y, Tanaka S. Histamine synthesis is required for granule maturation in murine mast cells. Eur J Immunol. 2014;44(1):204-14. doi: 10.1002/eji.201343838
  98. Rickard A, Lagunoff D. Eosinophil peroxidase accounts for most if not all of the peroxidase activity associated with isolated rat peritoneal mast cells. Int Arch Allergy Immunol. 1994;103(4):365-9. doi: 10.1159/000236655. PMID: 7510560.
  99. Ohtsu H, Kuramasu A, Tanaka S, Terui T, Hirasawa N, Hara M, Makabe-Kobayashi Y, Yamada N, Yanai K, Sakurai E, Okada M, Ohuchi K, Ichikawa A, Nagy A, Watanabe T. Plasma extravasation induced by dietary supplemented histamine in histaminefree mice. Eur J Immunol. 2002;32(6):1698-708. doi: 10.1002/15214141(200206)32:6<1698:: AID-IMMU 1698>3.0.CO;2-7.
  100. Olszewski MB, Groot AJ, Dastych J, Knol EF. TNF traffi ng to human mast cell granules: mature chain-dependent endocytosis. J Immunol. 2007;178(9):5701-9. doi: 10.4049/ jimmunol.178.9.5701
  101. Duelli A, Rönnberg E, Waern I, Ringvall M, Kolset SO, Pejler G. Mast cell differentiation and activation is closely linked to expression of genes coding for the serglycin proteoglycan core protein and a distinct set of chondroitin sulfate and heparin sulfotransferases. J Immunol. 2009;183(11):7073-83. doi: 10.4049/jimmunol.0900309
  102. Moon TC, Befus AD, Kulka M. Mast cell mediators: their differential release and the secretory pathways involved. Front Immunol. 2014;5:569. doi: 10.3389/fimmu.2014.00569
  103. Feyerabend TB, Hausser H, Tietz A, Blum C, Hellman L, Straus AH, Takahashi HK, Morgan ES, Dvorak AM, Fehling HJ, Rodewald HR. Loss of histochemical identity in mast cells lacking carboxypeptidase A. Mol Cell Biol. 2005;25(14):6199-210. doi: 10.1128/MCB.25.14.6199-6210.2005
  104. Stevens RL, McNeil HP, Wensing LA, Shin K, Wong GW, Hansbro PM, Krilis SA. Experimental Arthritis Is Dependent on Mouse Mast Cell Protease-5. J Biol Chem. 2017;292(13):5392-5404. doi: 10.1074/jbc.M116.773416
  105. Dvorak AM, Morgan ES, Lichtenstein L, Weller PF, Schleimer RP. RNA is closely associated with human mast cell secretory granules, suggesting a role(s) for granules in synthetic processes. J Histochem Cytochem. 2000;48:1-12.
  106. Dvorak AM, Morgan ES. Ribosomes and secretory granules in human mast cells: Close associations demonstrated by staining with a chelating agent. Immunol Rev. 2001;179:94-101.
  107. Dvorak AM. Ultrastructural studies of human basophils and mast cells. J Histochem Cytochem. 2005;53(9):1043-70. doi: 10.1369/ jhc.5R 6647.2005
  108. Atiakshin D, Buchwalow I, Horny P, Tiemann M. Protease profile of normal and neoplastic mast cells in the human bone marrow with special emphasis on systemic mastocytosis. Histochem Cell Biol. 2021;155(5):561-580. doi: 10.1007/s00418-021-01964-3
  109. Craig SS, Schechter NM, Schwartz LB Ultrastructural analysis of human T and TC mast cells identified by immunoelectron microscopy. Lab Invest. 1988;58(6):682-91.
  110. Craig SS, Schechter NM, Schwartz LB. Ultrastructural analysis of maturing human T and TC mast cells in situ. Lab Invest. 1989;60(1):147-57.
  111. Weidner N, Austen KF. Ultrastructural and immunohistochemical characterization of normal mast cells at multiple body sites. J Invest Dermatol. 1991;96(3 Suppl):26S-30S. doi: 10.1111/1523-1747.ep12468966
  112. Crivellato E, Beltrami CA, Mallardi F, Ribatti D. The mast cell: an active participant or an innocent bystander? Histol Histopathol. 2004;19(1):259-270.
  113. De Boer P, Hoogenboom JP, Giepmans BN. Correlated light and electron microscopy: ultrastructure lights up! Nat Methods. 2015;12:503-13.
  114. Caughey GH. Mast cell proteases as pharmacological targets. Eur J Pharmacol. 2016;778:44-55. doi: 10.1016/j.ejphar.2015.04.045
  115. Schwartz LB. Localization of carboxypeptidase A to the macromolecular heparin proteoglycan-protein complex in secretory granules of rat serosal mast cells. J. Immunol. 1982;128:1128-1133.
  116. Goldstein SM, Leong J, Schwartz LB, Cooke D. Protease composition of exocytosed human skin mast cell protease-proteoglycan complexes. Tryptase resides in a complex distinct from chymase and carboxypeptidase. J Immunol. 1992;148(8):2475-82.
  117. Schwartz LB, Riedel C, Caulfield JP, Wasserman SI, Austen KF. Cell association of complexes of chymase, heparin proteoglycan, and protein after degranulation by rat mast cells. J Immunol. 1981;126(6):2071-8.
  118. Forsberg E, Pejler G, Ringvall M, Lunderius C, Tomasini-Johansson B, Kusche-Gullberg M, Eriksson I, Ledin J, Hellman L, Kjellén L. Abnormal mast cells in mice defi in a heparin-synthesizing enzyme. Nature. 1999;400(6746):773-6. doi: 10.1038/23488
  119. Humphries DE, Wong GW, Friend DS, Gurish MF, Qiu WT, Huang C, Sharpe AH, Stevens RL. Heparin is essential for the storage of specifi granule proteases in mast cells. Nature. 1999;400(6746):769-72. doi: 10.1038/23481
  120. Dvorak AM, McLeod RS, Onderdonk A, MonahanEarley RA, Cullen JB, Antonioli DA, Morgan E, Blair JE, Estrella P, Cisneros RL. Ultrastructural evidence for piecemeal and anaphylactic degranulation of human gut mucosal mast cells in vivo. Int Arch Allergy Immunol. 1992;99(1):74-83.
  121. Xu H, Bin NR, Sugita S. Diverse exocytic pathways for mast cell mediators. Biochem Soc Trans. 2018;46(2):235-247.
  122. Crivellato E, Nico B, Mallardi F, Beltrami CA, Ribatti D. Piecemeal degranulation as a general secretory mechanism? Anat Rec A Discov Mol Cell Evol Biol. 2003;274(1):778-84.
  123. Williams RM, Webb WW. Single granule pH cycling in antigen-induced mast cell secretion. J Cell Sci. 2000;113 Pt 21:3839-50.
  124. Atiakshin D, Buchwalow I, Tiemann M. Mast cells and collagen fibrillogenesis. Histochem Cell Biol. 2020 Jul;154(1):21-40.
  125. Veerappan A, Thompson M, Savage AR, Silverman ML, Chan WS, Sung B, Summers B, Montelione KC, Benedict P, Groh B, Vicencio AG, Peinado H, Worgall S, Silver RB, Mast cells and exosomes in hyperoxia-induced neonatal lung disease. Am J Physiol Lung Cell Mol Physiol. 2016;310(11): L1218-32.
  126. Atiakshin D, Samoilova V, Buchwalow I, Boecker W, Tiemann M. Characterization of mast cell populations using different methods for their identifi Histochem Cell Biol. 2017;147(6):683-694.
  127. Melo FR, Wallerman O, Paivandy A, Calounova G, Gustafson AM, Sabari BR, Zabucchi G, Allis CD, Pejler G. Tryptasecatalyzed core histone truncation: A novel epigenetic regulatory mechanism in mast cells. J Allergy Clin Immunol. 2017;140(2):474-485.
  128. Alanazi S, Grujic M, Lampinen M, Rollman O, Sommerhoff CP, Pejler G, Melo FR. Mast Cell beta-Tryptase Is Enzymatically Stabilized by DNA. Int J Mol Sci. 2020;21(14):5065. doi: 10.3390/ijms21145065
  129. Alanazi S, Rabelo Melo F and Pejler G Tryptase Regulates the Epigenetic Modification of Core Histones in Mast Cell Leukemia Cells. Front. Immunol. 2021;12:804408. doi: 10.3389/ fimmu.2021.804408
  130. Kunder CA, St John AL, Li G, Leong KW, Berwin B, Staats HF, Abraham SN. Mast cell-derived particles deliver peripheral signals to remote lymph nodes. J Exp Med. 2009;206(11):2455-67.
  131. Puri N, Roche PA. Mast cells possess distinct secretory granule subsets whose exocytosis is regulated by different SNARE isoforms. Proc. Natl Acad. Sci. USA. 2008;105:2580-2585.
  132. Mulloy B, Lever R Page CP. Mast cell glycosaminoglycans. Glycoconjugate journal. 2017;34(3):351-361.
  133. Metz M, Piliponsky AM, Chen CC, Lammel V, Abrink M, Pejler G, Tsai M, Galli SJ. Mast cells can enhance resistance to snake and honeybee venoms. Science. 2006;313(5786):526-30. doi: 10.1126/ science.1128877
  134. Rivera J. Snake bites and bee stings: the mast cell strikes back. Nat Med. 2006;12(9):999-1000. doi: 10.1038/nm0906-999
  135. Asai S, Sato T, Tada T, Miyamoto T, Kimbara N, Motoyama N, Okada H, Okada N. Absence of procarboxypeptidase R induces complement-mediated lethal inflammation in lipopolysaccharide-primed mice. J Immunol. 2004;173(7):4669-74. doi: 10.4049/jimmunol.173.7.4669
  136. Sanglas L, Aviles FX, Huber R, Gomis-Rüth FX, Arolas JL. Mammalian metallopeptidase inhibition at the defense barrier of Ascaris parasite. Proc Natl Acad Sci U S A. 2009;106(6):1743-7. doi: 10.1073/ pnas.0812623106
  137. Maurer M, Wedemeyer J, Metz M, Piliponsky AM, Weller K, Chatterjea D, Clouthier DE, Yanagisawa MM, Tsai M, Galli SJ. Mast cells promote homeostasis by limiting endothelin-1-induced toxicity. Nat. Cell Biol. 2004;432:512-516.
  138. Pejler G. The emerging role of mast cell proteases in asthma. Eur Respir J. 2019;54(4):1900685. doi: 10.1183/13993003.00685-2019
  139. Owens EP, Vesey DA, Kassianos AJ, Healy H, Hoy WE, Gobe GC. Biomarkers and the role of mast cells as facilitators of inflammation and fibrosis in chronic kidney disease. Transl Androl Urol. 2019;8(Suppl2): S 175-S 183. doi: 10.21037/tau.2018.11.03.
  140. Magnúsdóttir EI, Grujic M, Bergman J, Pejler G, Lagerström MC. Mouse connective tissue mast cell proteases tryptase and carboxypeptidase A3 play protective roles in itch induced by endothelin-1. J Neuroinflammation. 2020;17(1):123. doi: 10.1186/ s12974-020-01795-4
  141. Hültner L, Ehrenreich H. Mast cells and endothelin-1: A life-saving biological liaison? Trends Immunol. 2005;26:235-238.
  142. Reddanna P, Prabhu KS, Whelan J, Reddy CC. Carboxypeptidase A-catalyzed direct conversion of leukotriene C 4 to leukotriene F4. Arch Biochem Biophys. 2003;413(2):158-63. doi: 10.1016/s0003-9861(03)00080-8
  143. Goldstein SM, Leong J, Bunnett NW. Human mast cell proteases hydrolyze neurotensin, kinetensin and Leu5-enkephalin. Peptides. 1991;12(5):995-1000. doi: 10.1016/0196-9781(91)90049-u
  144. Bunnett NW, Goldstein SM, Nakazato P. Isolation of a neuropeptide-degrading carboxypeptidase from the human stomach. Gastroenterology. 1992;102(1):76-87. doi: 10.1016/00165085(92)91786-4
  145. Cochrane DE, Carraway RE, Boucher W, Feldberg RS. Rapid degradation of neurotensin by stimulated rat mast cells. Peptides. 1991;12(6):1187-94. doi: 10.1016/0196-9781(91)90193-s
  146. Piliponsky AM, Chen CC, Nishimura T, Metz M, Rios EJ, Dobner PR, Wada E, Wada K, Zacharias S, Mohanasundaram UM, Faix JD, Abrink M, Pejler G, Pearl RG, Tsai M, Galli SJ. Neurotensin increases mortality and mast cells reduce neurotensin levels in a mouse model of sepsis. Nat Med. 2008;14(4):392-8. doi: 10.1038/nm1738
  147. Kokkonen JO, Vartiainen M, Kovanen PT. Low density lipoprotein degradation by secretory granules of rat mast cells. Sequential degradation of apolipoprotein B by granule chymase and carboxypeptidase A. J Biol Chem. 1986;261(34):16067-72.
  148. Abe M, Kurosawa M, Ishikawa O, Miyachi Y. Effect of mast cell-derived mediators and mast cell-related neutral proteases on human dermal fi proliferation and type I collagen production. J Allergy Clin Immunol. 2000;106(1Pt2): S 78-84. doi: 10.1067/mai.2000.106058
  149. Dell’Italia LJ, Collawn J, Ferrario CM. Multifunctional Role of Chymase in Acute and Chronic Tissue Injury and Remodeling. Circ Res. 2018;122:319-336.
  150. Okamoto Y, Takai S, Miyazaki M. Significance of chymase inhibition for prevention of adhesion formation. Eur. J. Pharmacol. 2004;484:357-359.
  151. Balzar S, Fajt ML, Comhair SA, Erzurum SC, Bleecker E, Busse WW, Castro M, Gaston B, Israel E, Schwartz LB, CurranEverett D, Moore CG, Wenzel SE. Mast cell phenotype, location, and activation in severe asthma. Data from the Severe Asthma Research Program. Am J Respir Crit Care Med. 2011;183(3):299-309. doi: 10.1164/rccm.201002-0295OC
  152. Lill M, Kõks S, Soomets U, Schalkwyk LC, Fernandes C, Lutsar I, Taba P. Peripheral blood RNA gene expression profi in patients with bacterial meningitis. Front Neurosci. 2013;7:33. doi: 10.3389/fnins.2013.00033
  153. Mikus MS, Kolmert J, Andersson LI, Östling J, Knowles RG, Gómez C, Ericsson M, Thörngren JO, Khoonsari PE, Dahlén B, Kupczyk M, De Meulder B, Auffray C, Bakke PS, Beghe B, Bel EH, Caruso M, Chanez P, Chawes B, Fowler SJ, Gaga M, Geiser T, Gjomarkaj M, Horváth I, Howarth PH, Johnston SL, Joos G, Krug N, Montuschi P, Musial J, Niżankowska-Mogilnicka E, Olsson HK, Papi A, Rabe KF, Sandström T, Shaw DE, Siafakas NM, Uhlen M, Riley JH, Bates S, Middelveld RJM, Wheelock CE, Chung KF, Adcock IM, Sterk PJ, Djukanovic R, Nilsson P, Dahlén SE, James A; U-BIOPRED (Unbiased Biomarkers for the Prediction of Respiratory Disease outcome) Study Group; BIOAIR (Longitudinal Assessment of Clinical Course and Biomarkers in Severe Chronic Airway Disease) Consortium. Plasma proteins elevated in severe asthma despite oral steroid use and unrelated to Type-2 inflammation. Eur Respir J. 2021 Nov 4:2100142. doi: 10.1183/13993003.00142-2021

Copyright (c) 2022 Atiakshin D.A., Kostin A.A., Trotsenko I.D., Shishkina V.V., Tiemann M., Buchwalow I.B.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies