Regulation of neurogenesis and cerebral angiogenesis by cell protein proteolysis products

Cover Page

Cite item


Brain development is a unique process characterized by mechanisms defined as neuroplasticity (synaptogenesis, synapse elimination, neurogenesis, and cerebral angiogenesis). Numerous neurodevelopmental disorders brain damage, and aging are manifested by neurological deficits that are caused by aberrant neuroplasticity. The presence of stem and progenitor cells in neurogenic niches of the brain is responsible for the formation of new neurons capable of integrating into preexisting synaptic assemblies. The determining factors for the cells within the neurogenic niche are the activity of the vascular scaffold and the availability of active regulatory molecules that establish the optimal microenvironment. It has been found that regulated intramembrane proteolysis plays an important role in the control of neurogenesis in brain neurogenic niches. Molecules generated by the activity of specific proteases can stimulate or suppress the activity of neural stem and progenitor cells, their proliferation and differentiation, migration and integration of newly formed neurons into synaptic networks. Local neoangiogenesis supports the processes of neurogenesis in neurogenic niches, which is guaranteed by the multivalent action of peptides formed from transmembrane proteins. Identification of new molecules regulating the neuroplasticity (neurogenesis and angiogenesis). i. e. enzymes, substrates, and products of intramembrane proteolysis, will ensure the development of protocols for detecting the neuroplasticity markers and targets for efficient pharmacological modulation.

About the authors

E. A. Teplyashina

Krasnoyarsk State Medical University

Author for correspondence.
ORCID iD: 0000-0001-7544-3779
Krasnoyarsk, Russian Federation

Y. K. Komleva

Krasnoyarsk State Medical University

ORCID iD: 0000-0001-5742-8356
Krasnoyarsk, Russian Federation

E. V. Lychkovskaya

Krasnoyarsk State Medical University

ORCID iD: 0000-0002-4017-1125
Krasnoyarsk, Russian Federation

A. S. Deikhina

Krasnoyarsk State Medical University

Krasnoyarsk, Russian Federation

A. B. Salmina

Krasnoyarsk State Medical University

ORCID iD: 0000-0003-4012-6348
Krasnoyarsk, Russian Federation


  1. Schofield R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells. 1978;4:7-25.
  2. Trentesaux C, Striediner K, Pomerants J, et al. From gut to glutes: The critical role of niche signals in the maintenance and renewal of adult stem cells. Curr Opin Cell Biol. 2020;63:88-101. doi: 10.1016/
  3. Obernier K, Alvarez-Buylla A. Neural stem cells: origin, heterogeneity and regulation in the adult mammalian brain. Development. 2019;146(4). doi: 10.1242/dev.156059.
  4. Nicaise AM, Willis C, Crocker S, et al. Stem Cells of the Aging Brain. Front Aging Neurosci. 2020;12:247. doi: 10.3389/fnagi.2020.00247.
  5. Moyse E, Segure S, Lierd O, et al. Microenvironmental determinants of adult neural stem cell proliferation and lineage commitment in the healthy and injured central nervous system. Curr Stem Cell Res Ther. 2008;3(3):163-84. doi: 10.2174/157488808785740334.
  6. Shetty AK, Hattiangady B. Grafted Subventricular Zone Neural Stem Cells Display Robust Engraftment and Similar Differentiation Properties and Form New Neurogenic Niches in the Young and Aged Hippocampus. Stem Cells Transl Med. 2016;5(9):1204-15. doi: 10.5966/sctm.2015-0270.
  7. Beattie R, Hippenmeyer S. Mechanisms of radial glia progenitor cell lineage progression. FEBS letters. 2017;591(24):3993-4008. doi: 10.1002/1873-3468.12906.
  8. Kriegstein A, Alvarez-Buylla A. The glial nature of embryonic and adult neural stem cells. Annual review of neuroscience. 2009;32:149-184. doi: 10.1146/annurev.neuro.051508.135600.
  9. Doetsch F. The glial identity of neural stem cells. Nat Neurosci. 2003;6(11):1127-34. doi: 10.1038/nn1144.
  10. Kriegstein AR, Götz M. Radial glia diversity: a matter of cell fate. Glia. 2003;43(1):37-43. doi: 10.1002/glia.10250.
  11. Taupin P. BrdU immunohistochemistry for studying adult neurogenesis: Paradigms, pitfalls, limitations, and validation. Brain Research Reviews. 2007;53(1):198-214. doi:
  12. Wang YZ, Plane JM, Jiang P, et al. Concise review: Quiescent and active states of endogenous adult neural stem cells: identification and characterization. Stem cells (Dayton, Ohio). 2011;29(6):907-912. doi: 10.1002/stem.644.
  13. Hodge RD, Hevner RF. Expression and actions of transcription factors in adult hippocampal neurogenesis. Developmental neurobiology. 2011;71(8):680-689. doi: 10.1002/dneu.20882.
  14. Lugert S, Basak O, Knuckles P., et al. Quiescent and Active Hippocampal Neural Stem Cells with Distinct Morphologies Respond Selectively to Physiological and Pathological Stimuli and Aging. Cell Stem Cell. 2010;6(5):445-456. doi:
  15. Encinas JM, Sierra A. Neural stem cell deforestation as the main force driving the age-related decline in adult hippocampal neurogenesis. Behavioural Brain Research. 2012;227(2):433-439. doi:
  16. Aguilar-Arredondo A, Arias C, Zepeda A. Evaluating the functional state of adult-born neurons in the adult dentate gyrus of the hippocampus: from birth to functional integration. Reviews in the Neurosciences. 2015;26(3):269. doi:
  17. Salmin VV, Komleva YK, Kuvacheva NV, et al. Differential Roles of Environmental Enrichment in Alzheimer’s Type of Neurodegeneration and Physiological Aging. Frontiers in Aging Neuroscience. 2017;9(245). doi: 10.3389/fnagi.2017.00245.
  18. Ho NF, Amar S, Holt DJ, et al. In vivo imaging of adult human hippocampal neurogenesis: progress, pitfalls and promise. Molecular Psychiatry. 2013;18(4):404-416. doi: 10.1038/mp.2013.8.
  19. Couillard-Despres S, Vreys R, Aigner L, et al. In vivo monitoring of adult neurogenesis in health and disease. Frontiers in Neuroscience. 2011;5:67. doi: 10.3389/fnins.2011.00067.
  20. Tamura Y, Kataoka Y. PET imaging of neurogenic activity in the adult brain: Toward in vivo imaging of human neurogenesis. Neurogenesis. 2017;4(1). e1281861. doi: 10.1080/23262133.2017.1281861.
  21. Komleva Y, Kuvacheva NV, Malinovskaya NA, et al. Regenerative potential of the brain: Composition and forming of regulatory microenvironment in neurogenic niches. Human Physiology. 2016;42:865-873. doi: 10.1134/s0362119716080077.
  22. Fuentealba LC, Obernier K, Alvarez-Buylla A. Adult Neural Stem Cells Bridge Their Niche. Cell Stem Cell. 2012; 10(6):698-708. doi:
  23. Falcão AM, Margues F, Novais A, et al. The path from the choroid plexus to the subventricular zone: go with the flow! Front Cell Neurosci. 2012;6:34. doi: 10.3389/fncel.2012.00034.
  24. Bernstock J, Verheyen J, Huang B, et al. Typical and Atypical Stem Cell Niches of the Adult Nervous System in Health and Inflammatory Brain and Spinal Cord Diseases. in: Adult Stem Cell Niches. Edited by Sabine Wislet. IntechOpen. 2014. doi: 10.5772/58599
  25. Pontes A, Zhang Y, Hu W. Novel functions of GABA signaling in adult neurogenesis. Frontiers in Biology. 2013;8(5). doi: 10.1007/s11515-013-1270-2.
  26. Lopatina OL, Malinovskaya N, Komleva YK, et al. Excitation/inhibition imbalance and impaired neurogenesis in neurodevelopmental and neurodegenerative disorders. Rev Neurosci. 2019;30(8):807-820. doi: 10.1515/revneuro-2019-0014.
  27. Morgun A, Osipova ED, Shuvaev A, et al. Astroglia-mediated regulation of cell development in the model of neurogenic niche in vitro treated with Aβ1-42. Biomeditsinskaya Khimiya. 2019;65.366-373. doi: 10.18097/pbmc20196505366.
  28. Berdugo-Vega G, Arias-Gil G, Lopez-Fernandes A, et al. Increasing neurogenesis refines hippocampal activity rejuvenating navigational learning strategies and contextual memory throughout life. Nature communications. 2020;11(1):135. doi: 10.1038/s41467-019-14026-z.
  29. Berg DA, Kirkham M, Beljajeva A. et al. Efficient regeneration by activation of neurogenesis in homeostatically quiescent regions of the adult vertebrate brain. Development. 2010;137(24):4127-4134. doi: 10.1242/dev.055541.
  30. Jurkowski MP, Bettio L, Woo EK, et al. Beyond the Hippocampus and the SVZ: Adult Neurogenesis Throughout the Brain. Frontiers in Cellular Neuroscience. 2020;14(293). doi: 10.3389/fncel.2020.576444.
  31. Mooney SJ, Shan K, Yeung S, et al. Focused Ultrasound-Induced Neurogenesis Requires an Increase in Blood-Brain Barrier Permeability. PLoS One. 2016; 11(7). e0159892-e0159892. doi: 10.1371/journal.pone.0159892.
  32. Feliciano DM, Bordey A, Bonfanti L. Noncanonical Sites of Adult Neurogenesis in the Mammalian Brain. Cold Spring Harbor perspectives in biology. 2015; 7(10). doi: 10.1101/cshperspect.a018846.
  33. Lin R, Cai J, Nathan C, et al. Neurogenesis is enhanced by stroke in multiple new stem cell niches along the ventricular system at sites of high BBB permeability. Neurobiology of Disease. 2015;74.229-239. doi:
  34. Varea E, Bellas M, Vidueira S, et al. PSA-NCAM is Expressed in Immature, but not Recently Generated, Neurons in the Adult Cat Cerebral Cortex Layer II. Frontiers in Neuroscience. 2011;5(17). doi: 10.3389/fnins.2011.00017.
  35. La Rosa C, Ghibaudi M, Bonfanti L. Newly Generated and Non-Newly Generated “Immature” Neurons in the Mammalian Brain: A Possible Reservoir of Young Cells to Prevent Brain Aging and Disease? Journal of clinical medicine. 2019;8(5):685. doi: 10.3390/jcm8050685.
  36. Péron S, Berninger B. Reawakening the sleeping beauty in the adult brain: neurogenesis from parenchymal glia. Curr Opin Genet Dev. 2015;34:46-53. doi: 10.1016/j.gde.2015.07.004.
  37. Magnusson JP, Zamboni M, Santopolo G, et al. Activation of a neural stem cell transcriptional program in parenchymal astrocytes. eLife. 2020;9. doi: 10.7554/eLife.59733.
  38. Sorrells SF, Paredes M, Cebrian-Silla A, et al. Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults. Nature. 2018;555(7696):377-381. doi: 10.1038/nature25975.
  39. Parolisi R, Cozzi B, Bonfanti L. Humans and Dolphins: Decline and Fall of Adult Neurogenesis. Frontiers in Neuroscience. 2018;12(497). doi: 10.3389/fnins.2018.00497.
  40. Salmina AB, Morgun A, Kuvacheva NA, et al. Establishment of neurogenic microenvironment in the neurovascular unit: the connexin 43 story. Rev Neurosci. 2014;25(1):97-111. doi: 10.1515/revneuro-2013-0044.
  41. Pozhilenkova EA, Lopatina OL, Komleva YK, et al. Blood-brain barrier-supported neurogenesis in healthy and diseased brain. Rev Neurosci. 2017;28(4):397-415. doi: 10.1515/revneuro-2016-0071.
  42. Font MA, Arboix A, Krupinski J. Angiogenesis, neurogenesis and neuroplasticity in ischemic stroke. Current cardiology reviews. 2010;6(3):238-244. doi: 10.2174/157340310791658802.
  43. Biron KE, Dickstein DL, Gopaul R, et al. Amyloid triggers extensive cerebral angiogenesis causing blood brain barrier permeability and hypervascularity in Alzheimer’s disease. PLoS One. 2011;6(8). e23789. doi: 10.1371/journal.pone.0023789.
  44. Lin R, Cal J, Kenyon L, et al. Systemic Factors Trigger Vasculature Cells to Drive Notch Signaling and Neurogenesis in Neural Stem Cells in the Adult Brain. STEM CELLS. 2019;37(3):395-406. doi:
  45. Cotman C, Berchtold N, Christie LA. Exercise Builds Brain Health: Key Roles of Growth Factor Cascades and Inflammation. Trends in neurosciences. 2007;30:464-72. doi: 10.1016/j.tins.2007.06.011.
  46. Louissaint A, Rao S, Leventhal C, et al. Coordinated Interaction of Neurogenesis and Angiogenesis in the Adult Songbird Brain. Neuron. 2002;34(6):945-960. doi: 10.1016/S0896-6273(02)00722-5.
  47. Kerr AL, Steuer EL, Pochtarev V. et al. Angiogenesis but not neurogenesis is critical for normal learning and memory acquisition. Neuroscience. 2010; 171(1):214-26. doi: 10.1016/j.neuroscience.2010.08.008.
  48. Tata M, Ruhrberg C, Fantin A. Vascularisation of the central nervous system. Mechanisms of development. 2015;138:1:26-36. doi: 10.1016/j.mod.2015.07.001.
  49. Salmina AB, Kuvacheva NV, Morgun AV, et al. Glycolysis-mediated control of blood-brain barrier development and function. Int J Biochem Cell Biol. 2015; 64:174-84. doi: 10.1016/j.biocel.2015.04.005.
  50. Durrant CS, Ruscher K, Sheppard O, et al. Beta secretase 1-dependent amyloid precursor protein processing promotes excessive vascular sprouting through NOTCH3 signalling. Cell Death Dis. 2020;11(2):98. doi: 10.1038/s41419-020-2288-4.
  51. Stefater JA, Lewkowich I, Rao S, et al. Regulation of angiogenesis by a non-canonical Wnt-Flt1 pathway in myeloid cells. Nature. 2011;474(7352):511-5. doi: 10.1038/nature10085.
  52. Shin Y, Yang K, Han S, et al. Reconstituting vascular microenvironment of neural stem cell niche in three-dimensional extracellular matrix. Adv Healthc Mater. 2014;3(9):1457-64. doi: 10.1002/adhm.201300569.
  53. Cakir B, Xiang Y, Tanaka Y, et al. Engineering of human brain organoids with a functional vascular-like system. Nature Methods. 2019;16(11):1169-1175. doi: 10.1038/s41592-019-0586-5.
  54. Nzou G, Wicks RT, Wicks CC, et al. Human Cortex Spheroid with a Functional Blood Brain Barrier for High-Throughput Neurotoxicity Screening and Disease Modeling. Scientific Reports. 2018;8(1):7413. doi: 10.1038/s41598-018-25603-5.
  55. Boulton ME, Cai J, Grant MB. gamma-Secretase: a multifaceted regulator of angiogenesis. Journal of cellular and molecular medicine. 2008;12(3):781-795. doi: 10.1111/j.1582-4934.2008.00274.x.
  56. Lal M, Caplan M. Regulated intramembrane proteolysis: signaling pathways and biological functions. Physiology (Bethesda). 2011;26(1):34-44. doi: 10.1152/physiol.00028.2010.
  57. Jurisch-Yaksi N, Sannerud R, Annaert W. A fast growing spectrum of biological functions of γ-secretase in development and disease. Biochimica et Biophysica Acta (BBA) - Biomembranes. 2013;1828(12):2815-2827. doi: 10.1016/j.bbamem.2013.04.016.
  58. Maia MA, Sousa E. BACE-1 and γ-secretase as therapeutic targets for Alzheimer’s disease. Pharmaceuticals. 2019;12(1). doi: 10.3390/ph12010041.
  59. Gadadhar A, Marr R, Lazarov O. Presenilin-1 regulates neural progenitor cell differentiation in the adult brain. The Journal of neuroscience : the official journal of the Society for Neuroscience. 2011;31(7):2615-2623. doi: 10.1523/jneurosci.4767-10.2011.
  60. Müller S, Scilabra S, Lichtenthaler S, et al. Proteomic Substrate Identification for Membrane Proteases in the Brain. Frontiers in Molecular Neuroscience. 2016;9. doi: 10.3389/fnmol.2016.00096.
  61. Merilahti JAM, Ojala VK, Knittle A, et al. Genome-wide screen of gamma-secretase-mediated intramembrane cleavage of receptor tyrosine kinases. Molecular Biology of the Cell. 2017;28(22):3123-3131. doi: 10.1091/mbc.e17-04-0261.
  62. De Strooper B, Annaert W. Where Notch and Wnt signaling meet. The presenilin hub. The Journal of cell biology. 2001;152(4):F17-F20. doi: 10.1083/jcb.152.4.f17.
  63. Tarassishin L, Yin Ye I, Bassit B, et al. Processing of Notch and amyloid precursor protein by γ-secretase is spatially distinct. Proceedings of the National Academy of Sciences of the United States of America. 2004;101(49):17050-17055. doi: 10.1073/pnas.0408007101.
  64. Kopan R, Ilagan MXG. The canonical Notch signaling pathway: unfolding the activation mechanism. Cell. 2009;137(2):216-233. doi: 10.1016/j.cell.2009.03.045.
  65. Müller T, Scilabra S, Lichtenthaler S, et al. The amyloid precursor protein intracellular domain (AICD) as modulator of gene expression, apoptosis, and cytoskeletal dynamics - Relevance for Alzheimer’s disease. Progress in neurobiology. 2008;85:393-406. doi: 10.1016/j.pneurobio.2008.05.002.
  66. Kageyama R, Ochi S, Sueda R, et al. The significance of gene expression dynamics in neural stem cell regulation. Proc Jpn Acad Ser B Phys Biol Sci. 2020;96(8):351-363. doi: 10.2183/pjab.96.026.
  67. Sueda R, Imayoshi I, Harima Y. et al. High Hes1 expression and resultant Ascl1 suppression regulate quiescent vs. active neural stem cells in the adult mouse brain. Genes Dev. 2019;33(9-10):511-523. doi: 10.1101/gad.323196.118.
  68. Bejoy J, Bijonowski B, Marzano M. et al. Wnt-Notch Signaling Interactions During Neural and Astroglial Patterning of Human Stem Cells. Tissue Engineering Part A. 2019;26(7-8):419-431. doi: 10.1089/ten.tea.2019.0202.
  69. Contreras EG, Egger B, Gold KS, et al. Dynamic Notch signalling regulates neural stem cell state progression in the Drosophila optic lobe. Neural Development. 2018;13(1):25. D doi: 10.1186/s13064-018-0123-8.
  70. Olsen JJ, Other-Gee Pohl S, Deshmukh A, et al. The Role of Wnt Signalling in Angiogenesis. The Clinical biochemist. Reviews. 2017;38(3):131-142.
  71. Roncarati R, Sesyan N, Scheinfeld MN, et al. The gamma-secretase-generated intracellular domain of beta-amyloid precursor protein binds Numb and inhibits Notch signaling. Proc Natl Acad Sci U S A. 2002;99(10):7102-7. doi: 10.1073/pnas.102192599.
  72. Borggrefe T, Lauth M, Zwijsen A, et al. The Notch intracellular domain integrates signals from Wnt, Hedgehog, TGFβ/BMP and hypoxia pathways. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 2016; 1863(2):303-313. doi:
  73. Stoll EA, Makin R, Sweet IR, et al. Neural Stem Cells in the Adult Subventricular Zone Oxidize Fatty Acids to Produce Energy and Support Neurogenic Activity. STEM CELLS. 2015;33(7):2306-19. doi: 10.1002/stem.2042.
  74. Knobloch M, Pilz G-A, Ghesguiere B, et al. A Fatty Acid Oxidation-Dependent Metabolic Shift Regulates Adult Neural Stem Cell Activity. Cell Rep. 2017;20(9):2144-2155. doi: 10.1016/j.celrep.2017.08.029.
  75. Álvarez Z, Hyrossova P, Perales JC, et al. Neuronal Progenitor Maintenance Requires Lactate Metabolism and PEPCK-M-Directed Cataplerosis. Cereb Cortex. 2016;26(3):1046-58. doi: 10.1093/cercor/bhu281.
  76. Slaninova V, Krafcikova M, Perez-Gomes R, et al. Notch stimulates growth by direct regulation of genes involved in the control of glycolysis and the tricarboxylic acid cycle. Open Biol. 2016;6(2):150155. doi: 10.1098/rsob.150155.
  77. Moriyama H, Moriyama M, Ozawa T, et al. Notch Signaling Enhances Stemness by Regulating Metabolic Pathways Through Modifying p53, NF-κB, and HIF-1α. Stem Cells and Development. 2018;27(13):935-947. doi: 10.1089/scd.2017.0260.
  78. Imayoshi I, Sakamoto M, Yamaguchi M, et al. Essential Roles of Notch Signaling in Maintenance of Neural Stem Cells in Developing and Adult Brains. The Journal of Neuroscience. 2010;30(9):3489-3498. doi: 10.1523/jneurosci.4987-09.2010.
  79. Yau SY, Li A, So KF. Involvement of Adult Hippocampal Neurogenesis in Learning and Forgetting. Neural Plast. 2015;717958. doi: 10.1155/2015/717958.
  80. Magnusson JP, Goritz C, Tatarishvili J, et al. A latent neurogenic program in astrocytes regulated by Notch signaling in the mouse. Science. 2014;346(6206).237-41. doi: 10.1126/science.346.6206.237.
  81. Lazarov O, Demars MP. All in the Family: How the APPs Regulate Neurogenesis. Frontiers in Neuroscience. 2012;6:81-81. doi: 10.3389/fnins.2012.00081.
  82. Kent SA, Spires-Jones TL, Durrant CS. The physiological roles of tau and Aβ: implications for Alzheimer’s disease pathology and therapeutics. Acta neuropathologica. 2020;140(4):417-447. doi: 10.1007/s00401-020-02196-w.
  83. Ruzaeva VA, Morgun AV, Khilazheva ED, et al. [Development of blood-brain barrier under the modulation of HIF activity in astroglialand neuronal cells in vitro]. Biomed Khim. 2016;62(6):664-669. doi: 10.18097/pbmc20166206664.
  84. Boscolo E, Folin M, Nico B, et al. Beta amyloid angiogenic activity in vitro and in vivo. Int J Mol Med. 2007;19(4):581-7.
  85. Kook SY, Hong HS, Moon M, et al. Aβ₁₋₄₂-RAGE interaction disrupts tight junctions of the blood-brain barrier via Ca²⁺-calcineurin signaling. The Journal of neuroscience : the official journal of the Society for Neuroscience. 2012; 32(26):8845-54. doi: 10.1523/jneurosci.6102-11.2012.
  86. Cai J, Jiang WG, Grant MB, et al. Pigment epithelium-derived factor inhibits angiogenesis via regulated intracellular proteolysis of vascular endothelial growth factor receptor 1. J Biol Chem. 2006;281(6):3604-13. doi: 10.1074/jbc.M507401200.
  87. Jin K, Zhu Y, Sun Y, et al. Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proc Natl Acad Sci U S A. 2002;99(18): 11946-50. doi: 10.1073/pnas.182296499.
  88. Zhang H, Vutskits L, Pepper M, et al. VEGF is a chemoattractant for FGF-2-stimulated neural progenitors. J Cell Biol. 2003;163(6):1375-84. doi: 10.1083/jcb.200308040.
  89. Wittko IM, Schanzer A, Kuzmichev A, et al. VEGFR-1 regulates adult olfactory bulb neurogenesis and migration of neural progenitors in the rostral migratory stream in vivo. The Journal of neuroscience : the official journal of the Society for Neuroscience. 2009;29(27):8704-8714. doi: 10.1523/jneurosci.5527-08.2009.
  90. Calvo CF, Fontaine RH, Soueild J, et al. Vascular endothelial growth factor receptor 3 directly regulates murine neurogenesis. Genes Dev. 2011;25(8):831-44. doi: 10.1101/gad.615311.
  91. Han J, Calvo CF, Kang TH, et al. Vascular Endothelial Growth Factor Receptor 3 Controls Neural Stem Cell Activation in Mice and Humans. Cell Reports. 2015;10(7):1158-1172. doi: 10.1016/j.celrep.2015.01.049.
  92. Park D, Xiang AP, Mao FF, et al. Nestin Is Required for the Proper Self-Renewal of Neural Stem Cells. STEM CELLS. 2010;28(12):2162-2171. doi: 10.1002/stem.541.
  93. Rizzino A. Sox2 and Oct-3/4: a versatile pair of master regulators that orchestrate the self-renewal and pluripotency of embryonic stem cells. Wiley interdisciplinary reviews. Systems biology and medicine. 2009;1(2):228-236. doi: 10.1002/wsbm.12.
  94. Hirata H, Tomita K, Bessho Y, et al. Hes1 and Hes3 regulate maintenance of the isthmic organizer and development of the mid/hindbrain. EMBO J. 2001;20(16): 4454-66. doi: 10.1093/emboj/20.16.4454.
  95. Thakurela S, Tiwari N, Schick S, et al. Mapping gene regulatory circuitry of Pax6 during neurogenesis. Cell Discovery. 2016;2(1):15045. doi: 10.1038/celldisc.2015.45.
  96. Horgusluoglu E, Nudelman K, Nho K, et al. Adult neurogenesis and neurodegenerative diseases: A systems biology perspective. Am J Med Genet B Neuropsychiatr Genet. 2017;174(1):93-112. doi: 10.1002/ajmg.b.32429.
  97. Wende CZ, Zoubaa S, Blak A, et al. Hairy/Enhancer-of-Split MEGANE and Proneural MASH1 Factors Cooperate Synergistically in Midbrain GABAergic Neurogenesis. PLoS One. 2015;10(5): e0127681. doi: 10.1371/journal.pone.0127681.
  98. Zhang J, Jiao J. Molecular Biomarkers for Embryonic and Adult Neural Stem Cell and Neurogenesis. Biomed Res Int. 2015;727542. doi: 10.1155/2015/727542.

Copyright (c) 2021 Teplyashina E.A., Komleva Y.K., Lychkovskaya E.V., Deikhina A.S., Salmina A.B.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies