The role of endogenous H2S in experimental metabolic syndrome

Cover Page

Cite item

Abstract

Relevance. The gasotransmitter hydrogen sulphide (H2S) is a well-known signalling molecule that is involved in the regulation of a wide range of cellular functions in both health and disease. Its biological effects in obesity and metabolic syndrome (MetS) have been investigated. It is a promising pharmacological target for the correction of MetS and associated diseases. The aim of this study is to investigate the role of endogenously produced H2S in the pathogenesis of metabolic disorders in experimental Met S. Materials and Methods. A high-fat and high-carbohydrate diet was used to induce MS in male Wistar rats. The body and adipose tissue weights of the animals were determined. The animals body and adipose tissue weights were measured. Indicators of carbohydrate and lipid metabolism in the blood serum were determined with the use of reagent kits. Additionally, the levels of reactive oxygen species (ROS) and reduced glutathione (GSH) were analyzed in adipose tissue through photometric analysis. The concentration of H2S in blood serum and adipose tissue, as well as H2S production by adipocytes, was measured spectrophotometrically. Results and Discussion. H2S concentrations in blood serum, adipose tissue and adipocyte H2S production were found to decrease in animals with hyperglycaemia and insulin resistance. Additionally, a negative correlation was observed between the H2S content and production in the adipose tissue of rats with the mass of visceral adipose tissue. Furthermore, a negative relationship was found between the concentrations of glucose, insulin, leptin, ROS and the level of H2S in blood serum and adipose tissue. In contrast, the increase in glutathione (GSH) in adipocytes was directly correlated with the increase in hydrogen sulfide (H2S) in serum and adipose tissue cells. Conclusions. The regulatory effect of H2S on target cell function has been extensively studied. However, its role in the development and progression of MetS remains unclear. Our work demonstrates that under conditions of metabolic pathology, there is a decrease in the serum concentration of H2S and its production in adipose tissue. This decrease correlates with the development of obesity, hyperglycemia, insulinemia, leptinemia, and redox imbalance.

About the authors

Julia G. Birulina

Siberian State Medical University

Author for correspondence.
Email: birulina20@yandex.ru
ORCID iD: 0000-0003-1237-9786
SPIN-code: 4878-1005
Tomsk, Russian Federation

Vladimir V. Ivanov

Siberian State Medical University

Email: birulina20@yandex.ru
ORCID iD: 0000-0001-9348-4945
SPIN-code: 4961-9959
Tomsk, Russian Federation

Evgeny E. Buyko

Siberian State Medical University

Email: birulina20@yandex.ru
ORCID iD: 0000-0002-6714-1938
SPIN-code: 6383-3580
Tomsk, Russian Federation

Olga V. Voronkova

Siberian State Medical University

Email: birulina20@yandex.ru
ORCID iD: 0000-0001-9478-3429
SPIN-code: 8005-8110
Tomsk, Russian Federation

Nikita A. Chernyshov

Siberian State Medical University

Email: birulina20@yandex.ru
ORCID iD: 0000-0002-4008-5606
SPIN-code: 7863-9900
Tomsk, Russian Federation

Svetlana V. Gusakova

Siberian State Medical University

Email: birulina20@yandex.ru
ORCID iD: 0000-0001-5047-8668
SPIN-code: 8973-8056
Tomsk, Russian Federation

References

  1. Kolluru GK, Shen X, Yuan S, Kevil CG. Gasotransmitter Heterocellular Signaling. Antioxid Redox Signal. 2017;26(16):936-960. doi: 10.1089/ars.2016.6909
  2. Cirino G, Szabo C, Papapetropoulos A. Physiological roles of hydrogen sulfide in mammalian cells, tissues, and organs. Physiol Rev. 2023;103(1):231-276. doi: 10.1152/physrev.00028.2021
  3. Hendriks KD, Maassen H, van Dijk PR, Henning RH, van Goor H, Hillebrands JL. Gasotransmitters in health and disease: a mitochondria-­centered view. Curr Opin Pharmacol. 2019;45:87-93. doi: 10.1016/j.coph.2019.07.001
  4. Liu YH, Lu M, Hu LF, Wong PT, Webb GD, Bian JS. Hydrogen sulfide in the mammalian cardiovascular system. Antioxid Redox Signal. 2012;17(1):141-185. doi: 10.1089/ars.2011.4005
  5. Nagpure BV, Bian JS. Brain, Learning, and Memory: Role of H2S in Neurodegenerative Diseases. Handb Exp Pharmacol. 2015;230:193-215. doi: 10.1007/978-3-319-18144-8_10
  6. Comas F, Moreno-­Navarrete JM. The Impact of H2S on Obesity-­Associated Metabolic Disturbances. Antioxidants (Basel). 2021;10(5):633. doi: 10.3390/antiox10050633
  7. Pandey T, Pandey V. Hydrogen sulfide (H2S) metabolism: Unraveling cellular regulation, disease implications, and therapeutic prospects for precision medicine. Nitric Oxide. 2024;144:20-28. doi: 10.1016/j.niox.2024.01.004
  8. Filipovic MR, Zivanovic J, Alvarez B, Banerjee R. Chemical Biology of H2S Signaling through Persulfidation. Chem Rev. 2018;118(3):1253-1337. doi: 10.1021/acs.chemrev.7b00205
  9. Wu Z, Barayeu U, Schilling D, Dick TP, Pratt DA. Emergence of (hydro)persulfides as suppressors of lipid peroxidation and ferroptotic cell death. Curr Opin Chem Biol. 2023;76:102353. doi: 10.1016/j.cbpa.2023.102353
  10. Bełtowski J, Wiórkowski K. Role of Hydrogen Sulfide and Polysulfides in the Regulation of Lipolysis in the Adipose Tissue: Possible Implications for the Pathogenesis of Metabolic Syndrome. Int J Mol Sci. 2022;23(3):1346. doi: 10.3390/ijms23031346
  11. Gheibi S., Jeddi S., Kashfi K., Ghasemi A. Effects of Hydrogen Sulfide on Carbohydrate Metabolism in Obese Type 2 Diabetic Rats. Molecules. 2019;24(1):190. doi: 10.3390/molecules24010190
  12. Birulina JG, Ivanov VV, Buyko EE, Bykov VV, Smagliy LV., Nosarev AV, Petrova IV, Gusakova SV, Popov OS, Vasilev VN. High-fat, high-carbohydrate diet-induced experimental model of metabolic syndrome in rats. Bulletin of Siberian Medicine. 2020;19(4):14-20. (In Russian). doi: 10.20538/1682-0363-2020-4-14-20
  13. Li L, Bhatia M, Zhu YZ, Zhu YC, Ramnath RD, Wang ZJ, Anuar FB, Whiteman M, Salto-­Tellez M, Moore PK. Hydrogen sulfide is a novel mediator of lipopolysaccharide-­induced inflammation in the mouse. FASEB J. 2005;19(9):1196-1198. doi: 10.1096/fj.04-3583fje
  14. Mok YY, Atan MS, Yoke Ping C, Zhong Jing W, Bhatia M, Moochhala S, Moore PK. Role of hydrogen sulphide in haemorrhagic shock in the rat: protective effect of inhibitors of hydrogen sulphide biosynthesis. Br J Pharmacol. 2004;143(7):881-889. doi: 10.1038/sj.bjp.0706014
  15. Liu L, Zou P, Zheng L, Linarelli LE, Amarell S, Passaro A, Liu D, Cheng Z. Tamoxifen reduces fat mass by boosting reactive oxygen species. Cell Death Dis. 2015;6(1): e1586. doi: 10.1038/cddis.2014.553
  16. Revenko O, Pavlovskiy Y, Savytska M, Yashchenko A, Kovalyshyn V, Chelpanova I, Varyvoda O, Zayachkivska O. Hydrogen Sulfide Prevents Mesenteric Adipose Tissue Damage, Endothelial Dysfunction, and Redox Imbalance From High Fructose Diet-­Induced Injury in Aged Rats. Front Pharmacol. 2021;12:693100. doi: 10.3389/fphar.2021.693100
  17. Feng X, Chen Y, Zhao J, Tang C, Jiang Z, Geng B. Hydrogen sulfide from adipose tissue is a novel insulin resistance regulator. Biochem Biophys Res Commun. 2009;380(1):153-159. doi: 10.1016/j.bbrc.2009.01.059
  18. Abramavicius S, Petersen AG, Renaltan NS, Prat-­Duran J, Torregrossa R, Stankevicius E, Whiteman M, Simonsen U. GYY4137 and Sodium Hydrogen Sulfide Relaxations Are Inhibited by L-Cysteine and KV7 Channel Blockers in Rat Small Mesenteric Arteries. Front Pharmacol. 2021;12:613989. doi: 10.3389/fphar.2021.613989
  19. Katsouda A, Szabo C, Papapetropoulos A. Reduced adipose tissue H2S in obesity. Pharmacol Res. 2018;128:190-199. doi: 10.1016/j.phrs.2017.09.023
  20. Yang G, Ju Y, Fu M, Zhang Y, Pei Y, Racine M, Baath S, Merritt TJS, Wang R, Wu L. Cystathionine gamma-­lyase/hydrogen sulfide system is essential for adipogenesis and fat mass accumulation in mice. Biochim Biophys Acta Mol Cell Biol Lipids. 2018;1863(2):165-176. doi: 10.1016/j.bbalip.2017.11.008
  21. Ren H, Liu TC, Lu Y, Zhang K, Xu Y, Zhou P, Tang X. A comparison study of the influence of milk protein versus whey protein in high-protein diets on adiposity in rats. Food Funct. 2021;12(3):1008-1019. doi: 10.1039/d0fo01960g
  22. Alkhouri N, Eng K, Cikach F, Patel N, Yan C, Brindle A, Rome E, Hanouneh I, Grove D, Lopez R, Hazen SL, Dweik RA. Breathprints of childhood obesity: changes in volatile organic compounds in obese children compared with lean controls. Pediatr Obes. 2015;10(1):23-9. doi: 10.1111/j.2047-6310.2014.221.x
  23. Comas F, Latorre J, Ortega F, Arnoriaga Rodríguez M, Lluch A, Sabater M, Rius F, Ribas X, Costas M, Ricart W, Lecube A, Fernández-­Real JM, Moreno-­Navarrete JM. Morbidly obese subjects show increased serum sulfide in proportion to fat mass. Int J Obes (Lond). 2021;45(2):415-426. doi: 10.1038/s41366-020-00696-z
  24. Zhang L, Yang G, Tang G, Wu L, Wang R. Rat pancreatic level of cystathionine γ-lyase is regulated by glucose level via specificity protein 1 (SP1) phosphorylation. Diabetologia. 2011;54(10):2615-25. doi: 10.1007/s00125-011-2187-4
  25. Wu L, Yang W, Jia X, Yang G, Duridanova D, Cao K, Wang R. Pancreatic islet overproduction of H2S and suppressed insulin release in Zucker diabetic rats. Lab Invest. 2009;89(1):59-67. doi: 10.1038/labinvest.2008.109
  26. Manna P, Jain SK. Vitamin D up-regulates glucose transporter 4 (GLUT4) translocation and glucose utilization mediated by cystathionine-γ-lyase (CSE) activation and H2S formation in 3T3L1 adipocytes. J Biol Chem. 2012;287(50):42324-32. doi: 10.1074/jbc.M112.407833

Supplementary files

Supplementary Files
Action
1. Fig. 1. Concentration of ROS and reduced glutathione (GSH) in the adipose tissue of control and experimental rats. р — significance to control group

Download (35KB)
2. Fig. 2. Relationship of the concentration of H2S and H2S production with the adipose tissue/body weight ratio in rats of the control and experimental groups; r — Spearman’s correlation coefficient; р — significance vs. control group

Download (61KB)

Copyright (c) 2024 Birulina J.G., Ivanov V.V., Buyko E.E., Voronkova O.V., Chernyshov N.A., Gusakova S.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies