Malignant neoplasms ozone therapy

Cover Page

Cite item

Abstract

The development of effective therapeutic approaches for the treatment of malignant neoplasms is one of the priorities of modern biomedical research. Disappointing data from epidemiological indicators and statistical calculations of morbidity dictate the need to develop and implement increasingly effective treatment methods, as well as its modulation. In experimental work on cell lines, animal models and in clinical studies, the positive biological effects of ozone therapy are noted, consisting in the ability of ozone to have an antineoplastic effect on tumors and sensitize them to chemoradiotherapy. Therapy of malignant tumors is a key object of modern biomedical studies. The aim of this work was to summarize experimental and clinical data on the place of ozone therapy in the treatment of malignant neoplasms. The literature included in the current systematic review was obtained from an independent literature search performed in the following databases: Elibrary, Сyberleninka, Central Scientific Medical Library, Google Scholar, Semantic Scholar, PubMed and Cochrane. It was found that the biological effects of ozone are based on its reactions with organic compounds: water-soluble and lipophilic antioxidants, as well as unsaturated fatty acids, resulting in the generation of reactive oxygen species and lipid peroxides, which have messenger properties, interacting with various cellular and tissue structures. It is believed that early biological effects are realized due to reactive oxygen species, and late ones due to lipoperoxides. Conclusion. In a number of research works, which were carried out on many cultures of tumor cells, animal models and in clinical use, the positive biological effects of ozone therapy were established, associated with the fact that ozone has a cytotoxic and cytostatic effect on cyclic histogenesis and localization, and also sensitizes blastotransformed cells to ionizing agents and chemotherapeutic agents.

About the authors

Pavel Yu. Andreev

Voronezh Regional Clinical Oncological Dispensary; N.N. Burdenko Voronezh state medical university

Email: tsvn@bk.ru
ORCID iD: 0000-0002-4123-9347
SPIN-code: 1222-2565
Voronezh, Russian Federation

Ivan P. Moshurov

Voronezh Regional Clinical Oncological Dispensary; N.N. Burdenko Voronezh state medical university

Email: tsvn@bk.ru
ORCID iD: 0000-0003-1333-5638
SPIN-code: 6907-2629
Voronezh, Russian Federation

Nataliya V. Korotkih

Voronezh Regional Clinical Oncological Dispensary; N.N. Burdenko Voronezh state medical university

Email: tsvn@bk.ru
ORCID iD: 0000-0002-0308-513X
SPIN-code: 2212-6667
Voronezh, Russian Federation

Viktoria V. Shishkina

N.N. Burdenko Voronezh state medical university

Email: tsvn@bk.ru
ORCID iD: 0000-0001-9185-4578
SPIN-code: 9339-7794
Voronezh, Russian Federation

Tatiana V. Samoilenko

N.N. Burdenko Voronezh state medical university

Email: tsvn@bk.ru
ORCID iD: 0000-0001-9990-535X
SPIN-code: 8023-5924
Voronezh, Russian Federation

Elena S. Goryushkina

Voronezh Regional Clinical Oncological Dispensary; N.N. Burdenko Voronezh state medical university

Email: tsvn@bk.ru
ORCID iD: 0000-0003-4813-8466
SPIN-code: 1378-7608
Voronezh, Russian Federation

Lyubov N. Antakova

N.N. Burdenko Voronezh state medical university

Author for correspondence.
Email: tsvn@bk.ru
ORCID iD: 0000-0001-5212-1005
SPIN-code: 3936-3381
Voronezh, Russian Federation

References

  1. Larrañaga MD, Lewis, RJ, Sr and Lewis, RA. Hawley’s Condensed Chemical Dictionary, Sixteenth Edition. John Wiley & Sons, Inc. New Jersey. 2016. 1547 p. doi: 10.1002/9781119312468.ch1
  2. Tanaka T, Morino Y. Coriolis interaction and anharmonic potential function of ozone from the microwave spectra in the excited vibrational states. Journal of Molecular Spectroscopy. 1970;33(3):538—551. doi: 10.1016/0022-2852(70)90148-7.
  3. Sweet F, Kao MS, Lee SC, Hagar WL, Sweet WE. Ozone selectively inhibits growth of human cancer cells. Science. 1980;209(4459):931—933. doi: 10.1126/science.7403859
  4. Elvis AM, Ekta JS. Ozone therapy: A clinical review. J Nat Sci Biol Med. 2011;2(1):66—70. doi: 10.4103/0976-9668.82319
  5. Emami Nejad A, Najafgholian S, Rostami A, Sistani A, Shojaeifar S, Esparvarinha M, Nedaeinia R, Haghjooy Javanmard S, Taherian M, Ahmadlou M, Salehi R, Sadeghi B, Manian M. The role of hypoxia in the tumor microenvironment and development of cancer stem cell: a novel approach to developing treatment. Cancer Cell Int. 2021;21(1):62.
  6. Vaupel P, Harrison L. Tumor hypoxia: causative factors, compensatory mechanisms, and cellular response. Oncologist. 2004;9(5):4—9. doi: 10.1634/theoncologist.9-90005-4
  7. Carmeliet P. Angiogenesis in life, disease and medicine. Nature. 2005;438(7070):932—936. doi: 10.1038/nature04478
  8. Wigerup C, Påhlman S, Bexell D. Therapeutic targeting of hypoxia and hypoxia-­inducible factors in cancer. Pharmacol Ther. 2016;164:152—169. doi: 10.1016/j.pharmthera.2016.04.009
  9. Nakayama K, Kataoka N. Regulation of Gene Expression under Hypoxic Conditions. Int J Mol Sci. 2019;20(13):3278. doi: 10.3390/ijms20133278
  10. Semenza GL. Hypoxia-­inducible factor 1 (HIF‑1) pathway. Sci STKE. 2007;2007(407): cm8.
  11. Kaneko T, Dehari H, Sasaki T, Igarashi T, Ogi K, Okamoto JY, Kawata M, Kobayashi JI, Miyazaki A, Nakamori K, Hiratsuka H. Hypoxia-­induced epithelial-­mesenchymal transition is regulated by phosphorylation of GSK3‑β via PI3 K/Akt signaling in oral squamous cell carcinoma. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology. 2016;122(6):719—730. doi: 10.1016/j.oooo.2016.06.008.
  12. Joseph JP, Harishankar MK, Pillai AA, Devi A. Hypoxia induced EMT: A review on the mechanism of tumor progression and metastasis in OSCC. Oral Oncol. 2018;80:23—32. doi: 10.1016/j.oraloncology.2018.03.004
  13. Nurwidya F, Takahashi F, Kobayashi I, Murakami A, Kato M, Minakata K, Nara T, Hashimoto M, Yagishita S, Baskoro H, Hidayat M, Shimada N, Takahashi K. Treatment with insulin-like growth factor 1 receptor inhibitor reverses hypoxia-­induced epithelial-­mesenchymal transition in non-small cell lung cancer. Biochem Biophys Res Commun. 2014;455(3—4):332—338. doi: 10.1016/j.bbrc.2014.11.014
  14. Tam SY, Wu VWC, Law HKW. Hypoxia-­Induced Epithelial-­Mesenchymal Transition in Cancers: HIF‑1α and Beyond. Front Oncol. 2020;10:486.
  15. Joseph JP, Harishankar MK, Pillai AA, Devi A. Hypoxia induced EMT: A review on the mechanism of tumor progression and metastasis in OSCC. Oral Oncology. 2018;80:23—32. doi: 10.1016/j.oraloncology.2018.03.004
  16. Gilkes DM, Bajpai S, Chaturvedi P, Wirtz D, Semenza GL. Hypoxia-­inducible factor 1 (HIF‑1) promotes extracellular matrix remodeling under hypoxic conditions by inducing P4HA1, P4HA2, and PLOD2 expression in fibroblasts [retracted in: J Biol Chem. 2023;299(9):105144. doi: 10.1016/j.jbc.2023.105144]. J Biol Chem. 2013;288(15):10819—10829. doi: 10.1074/jbc.M112.442939
  17. Gilkes DM, Bajpai S, Wong CC, Chaturvedi P, Hubbi ME, Wirtz D, Semenza GL. Procollagen lysyl hydroxylase 2 is essential for hypoxia-­induced breast cancer metastasis. Mol Cancer Res. 2013;11(5):456—466. doi: 10.1158/1541-7786.MCR‑12-0629
  18. Sada M, Ohuchida K, Horioka K, Okumura T, Moriyama T, Miyasaka Y, Ohtsuka T, Mizumoto K, Oda Y, Nakamura M. Hypoxic stellate cells of pancreatic cancer stroma regulate extracellular matrix fiber organization and cancer cell motility. Cancer Lett. 2016;372(2):210—218. doi: 10.1016/j.canlet.2016.01.016
  19. Eckert AW, Wickenhauser C, Salins PC, Kappler M, Bukur J, Seliger B. Clinical relevance of the tumor microenvironment and immune escape of oral squamous cell carcinoma. J Transl Med. 2016;14:85. doi: 10.1186/s12967-016-0828-6
  20. Vito A, El-­Sayes N, Mossman K. Hypoxia-­Driven Immune Escape in the Tumor Microenvironment. Cells. 2020;9(4):992. doi: 10.3390/cells9040992
  21. Noman MZ, Hasmim M, Messai Y, Terry S, Kieda C, Janji B, Chouaib S. Hypoxia: a key player in antitumor immune response. A Review in the Theme: Cellular Responses to Hypoxia. Am J Physiol Cell Physiol. 2015;309(9): C569-C579. doi: 10.1152/ajpcell.00207.2015
  22. Muz B, de la Puente P, Azab F, Azab AK. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia (Auckl). 2015;3:83—92. doi: 10.2147/HP.S93413
  23. Dengler VL, Galbraith M, Espinosa JM. Transcriptional regulation by hypoxia inducible factors. Crit Rev Biochem Mol Biol. 2014;49(1):1—15. doi: 10.3109/10409238.2013.838205
  24. Yasuda H. Solid tumor physiology and hypoxia-­induced chemo/radio-­resistance: novel strategy for cancer therapy: nitric oxide donor as a therapeutic enhancer. Nitric Oxide. 2008;19(2):205—216. doi: 10.1016/j.niox.2008.04.026
  25. Samanta D, Prabhakar NR, Semenza GL. Systems biology of oxygen homeostasis. Wiley Interdiscip Rev Syst Biol Med. 2017;9(4):10.1002/wsbm.1382. doi: 10.1002/wsbm.1382
  26. Wang H, Jiang H, Van De Gucht M, De Ridder M. Hypoxic Radioresistance: Can ROS Be the Key to Overcome It? Cancers (Basel). 2019;11(1):112.
  27. Begg K, Tavassoli M. Inside the hypoxic tumour: reprogramming of the DDR and radioresistance. Cell Death Discov. 2020;6:77. doi: 10.1038/s41420-020-00311-0.
  28. De Ridder M, Verellen D, Verovski V, Storme G. Hypoxic tumor cell radiosensitization through nitric oxide. Nitric Oxide. 2008;19(2):164—169. doi: 10.1016/j.niox.2008.04.015
  29. Kabakov AE, Yakimova AO. Hypoxia-­Induced Cancer Cell Responses Driving Radioresistance of Hypoxic Tumors: Approaches to Targeting and Radiosensitizing. Cancers (Basel). 2021;13(5):1102. doi: 10.3390/cancers13051102
  30. Horsman MR, Overgaard J. The impact of hypoxia and its modification of the outcome of radiotherapy. J Radiat Res. 2016;57. doi: 10.1093/jrr/rrw007
  31. Clarke RH, Moosa S, Anzivino M, Sistani A, Shojaeifar S, Esparvarinha M, Nedaeinia R, Haghjooy Javanmard S, Taherian M, Ahmadlou M, Salehi R, Sadeghi B, Manian M. Sustained radiosensitization of hypoxic glioma cells after oxygen pretreatment in an animal model of glioblastoma and in vitro models of tumor hypoxia. PLoS One. 2014;9(10): e111199. doi: 10.1371/journal.pone.0111199
  32. Cosse JP, Michiels C. Tumour hypoxia affects the responsiveness of cancer cells to chemotherapy and promotes cancer progression. Anticancer Agents Med Chem. 2008;8(7):790—797. doi: 10.2174/187152008785914798
  33. Shannon AM, Bouchier-­Hayes DJ, Condron CM, Toomey D. Tumour hypoxia, chemotherapeutic resistance and hypoxia-­related therapies. Cancer Treat Rev. 2003;29(4):297—307. doi: 10.1016/s0305-7372(03)00003-3
  34. Rohwer N, Cramer T. Hypoxia-­mediated drug resistance: novel insights on the functional interaction of HIFs and cell death pathways. Drug Resist Updat. 2011;14(3):191—201. doi: 10.1016/j.drup.2011.03.001.
  35. Doktorova H, Hrabeta J, Khalil MA, Eckschlager T. Hypoxia-­induced chemoresistance in cancer cells: The role of not only HIF‑1. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2015;159(2):166—177. doi: 10.5507/bp.2015.025
  36. Song X, Liu X, Chi W, Liu Y, Wei L, Wang X, Yu J. Hypoxia-­induced resistance to cisplatin and doxorubicin in non-small cell lung cancer is inhibited by silencing of HIF‑1alpha gene. Cancer Chemother Pharmacol. 2006;58(6):776—784. doi: 10.1007/s00280-006-0224-7
  37. Jing X, Yang F, Shao C, Wei K, Xie M, Shen H, Shu Y. Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Mol Cancer. 2019;18(1):157. doi: 10.1186/s12943—019—1089—9
  38. Luongo M, Brigida AL, Mascolo L, Gaudino G. Possible Therapeutic Effects of Ozone Mixture on Hypoxia in Tumor Development. Anticancer Res. 2017;37(2):425—435. doi: 10.21873/anticanres.11334
  39. Güçlü A, Erken HA, Erken G, Dodurga Y, Yay A, Özçoban Ö, Şimşek H, Akçılar A, Koçak FE. The effects of ozone therapy on caspase pathways, TNF-α, and HIF‑1α in diabetic nephropathy. Int Urol Nephrol. 2016;48(3):441—450. doi: 10.1007/s11255-015-1169-8
  40. Saglam E, Alinca SB, Celik TZ, Hacisalihoglu UP, Dogan MA. Evaluation of the effect of topical and systemic ozone application in periodontitis: an experimental study in rats. J Appl Oral Sci. 2019;28: e20190140. doi: 10.1590/1678-7757-2019-0140
  41. Bocci V, Oxygen-­Ozone Therapy. A Critical Evaluation. (Dordrecht, The Netherlands: Kluwer Academic Publisher). 2002. 314 p.
  42. Moi P, Chan K, Asunis I, Cao A, Kan YW. Isolation of NF-E2‑related factor 2 (Nrf2), a NF-E2‑like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the beta-globin locus control region. Proc Natl Acad Sci U S A. 1994;91(21):9926—9930. doi: 10.1073/pnas.91.21.9926
  43. Howe KL, Achuthan P, Allen J. Ensembl 2021. Nucleic Acids Res. 2021;49(D1): D884-D891. doi: 10.1093/nar/gkaa942
  44. UniProt Consortium. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. 2021;49(D1): D480-D489. doi: 10.1093/nar/gkaa1100
  45. Amberger J, Bocchini CA, Scott AF, Hamosh A. McKusick’s Online Mendelian Inheritance in Man (OMIM). Nucleic Acids Res. 2009;37(Database issue): D793-D796. doi: 10.1093/nar/gkn665
  46. Chan JY, Cheung MC, Moi P, Chan K, Kan YW. Chromosomal localization of the human NF-E2 family of bZIP transcription factors by fluorescence in situ hybridization. Hum Genet. 1995;95(3):265—269. doi: 10.1007/BF00225191
  47. Huppke P, Weissbach S, Church JA, Schnur R, Krusen M, Dreha-­Kulaczewski S, Kühn-­Velten WN, Wolf A, Huppke B, Millan F, Begtrup A, Almusafri F, Thiele H, Altmüller J, Nürnberg P, Müller M, Gärtner J. Activating de novo mutations in NFE2L2 encoding NRF2 cause a multisystem disorder. Nat Commun. 2017;8(1):818. doi: 10.1038/s41467-017-00932-7
  48. Vomhof-­Dekrey EE, Picklo MJ Sr. The Nrf2‑antioxidant response element pathway: a target for regulating energy metabolism. J Nutr Biochem. 2012;23(10):1201—1206. doi: 10.1016/j.jnutbio.2012.03.005
  49. Kobayashi M, Yamamoto M. Nrf2-Keap1 regulation of cellular defense mechanisms against electrophiles and reactive oxygen species. Adv Enzyme Regul. 2006; 46:113—140. doi: 10.1016/j.advenzreg.2006.01.007.
  50. Wang Y, Devereux W, Stewart TM, Casero RA Jr. Cloning and characterization of human polyamine-­modulated factor‑1, a transcriptional cofactor that regulates the transcription of the spermidine/spermine N(1)-acetyltransferase gene. J Biol Chem. 1999;274(31):22095—22101. doi: 10.1074/jbc.274.31.22095
  51. Kaitsuka T, Tomizawa K, Matsushita M. Transformation of eEF1Bδ into heat-shock response transcription factor by alternative splicing. EMBO Rep. 2011;12(7):673—681. doi: 10.1038/embor.2011.82
  52. Smith NL, Wilson AL, Gandhi J, Vatsia S, Khan SA. Ozone therapy: an overview of pharmacodynamics, current research, and clinical utility. Med Gas Res. 2017;7(3):212—219. doi: 10.4103/2045-9912.215752
  53. Inal M, Dokumacioglu A, Özcelik E, Ucar O. The effects of ozone therapy and coenzyme Q10 combination on oxidative stress markers in healthy subjects. Ir J Med Sci. 2011;180(3):703—707. doi: 10.1007/s11845-011-0675-7
  54. Fetner RH. Ozone-induced chromosome breakage in human cell cultures. Nature. 1962;194:793—794. doi: 10.1038/194793a0
  55. Fetner RH, Ingols RS. A comparison of the bactericidal activity of ozone and chlorine against Escherichia coli at 1degree. J Gen Microbiol. 1956;15(2):381—385. doi: 10.1099/00221287-15-2-381.
  56. Fetner RH. Chromosome Breakage in Vicia faba by Ozone. Nature 1958;181:504—505. doi.org:10.1038/181504a0
  57. Karlic H, Kucera H, Metka M, Schönbauer M, Söregi G. Effect of ozone and ionizing radiation on an in vitro model — a pilot study of 4 gynecologic tumors. Strahlenther Onkol. 1987;163(1):37—42.(In German). [Karlic H, Kucera H, Metka M, Schönbauer M, Söregi G. Zur Wirkung von Ozon und ionisierender Strahlung am In-vitro-­Modelleine Pilotstudie an vier gynäkologischen Tumoren Strahlenther Onkol. 1987;163(1):37—42.]
  58. Zänker KS, Kroczek R. In vitro synergistic activity of 5‑fluorouracil with low-dose ozone against a chemoresistant tumor cell line and fresh human tumor cells. Chemotherapy. 1990;36(2):147—154. doi: 10.1159/000238761
  59. Washüttl J, Viebahn R, Steiner I. The influence of ozone on tumor tissue in comparison with healthy tissue. Ozone Sci Engl. 1990; 12:65—72.
  60. Cannizzaro A, Verga Falzacappa CV, Martinelli M, Misiti S, Brunetti E, Bucci B. O(2/3) exposure inhibits cell progression affecting cyclin B1/cdk1 activity in SK-N-SH while induces apoptosis in SK-N-DZ neuroblastoma cells. J Cell Physiol. 2007;213(1):115—125. doi: 10.1002/jcp.21097
  61. Locksley RM, Killeen N, Lenardo MJ. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell. 2001;104(4):487—501. doi: 10.1016/s0092-8674(01)00237-9
  62. Aggarwal BB, Gupta SC, Kim JH. Historical perspectives on tumor necrosis factor and its superfamily: 25 years later, a golden journey. Blood. 2012;119(3):651—665. doi: 10.1182/blood‑2011-04-325225
  63. Mary VM, Lahijani HA, Khan FA. Ozone Induced Cell Death in HeLa cell Culture Mediated through Stimulation of TNF- Alpha. MOJ Immunol 2015;2(4): 00051. doi: 10.15406/moji.2015.02.00051
  64. Simonetti V, Quagliariello V, Giustetto P, Franzini M, Iaffaioli RV. Association of Ozone with 5-Fluorouracil and Cisplatin in Regulation of Human Colon Cancer Cell Viability: In Vitro Anti-­Inflammatory Properties of Ozone in Colon Cancer Cells Exposed to Lipopolysaccharides. Evid Based Complement Alternat Med. 2017;2017:7414083. doi: 10.1155/2017/7414083
  65. Luongo M, Marinelli O, Zeppa L, Aguzzi C, Morelli MB, Amantini C, Frassineti A, di Costanzo M, Fanelli A, Santoni G, Nabissi M. Cannabidiol and Oxygen-­Ozone Combination Induce Cytotoxicity in Human Pancreatic Ductal Adenocarcinoma Cell Lines. Cancers (Basel). 2020;12(10):2774. doi: 10.3390/cancers12102774
  66. Tang S, Xu B, Li J, Zhong M, Hong Z, Zhao W, Zeng T, He X. Ozone induces BEL7402 cell apoptosis by increasing reactive oxygen species production and activating JNK. Ann Transl Med. 2021;9(15):1257. doi: 10.21037/atm‑21-3233
  67. Adachi T. Molecular Mechanisms Underlying Cellular Responses to the Loading of Non-thermal Atmospheric Pressure Plasma-­activated Solutions Yakugaku Zasshi. 2021;141(10):1185—1194. doi: 10.1248/yakushi.21-00134
  68. Arjunan KP, Sharma VK, Ptasinska S. Effects of Atmospheric Pressure Plasmas on Isolated and Cellular DNA — A Review. International Journal of Molecular Sciences. 2015; 16(2):2971—3016. https://doi.org/10.3390/ijms16022971
  69. Tanaka H, Hori M. Medical applications of non-thermal atmospheric pressure plasma. J Clin Biochem Nutr. 2017;60(1):29—32. doi: 10.3164/jcbn.16-67
  70. Yousfi M, Merbahi N, Pathak A, Eichwald O. Low-temperature plasmas at atmospheric pressure: toward new pharmaceutical treatments in medicine. Fundam Clin Pharmacol. 2014;28(2):123—135. doi: 10.1111/fcp.12018
  71. Kaushik NK, Kaushik N, Linh NN, Ghimire B, Pengkit A, Sornsakdanuphap J, Lee SJ, Choi EH. Plasma and Nanomaterials: Fabrication and Biomedical Applications. Nanomaterials (Basel). 2019;9(1):98. doi: 10.3390/nano9010098
  72. Ahn HJ, Kim KI, Hoan NN, Kim CH, Moon E, Choi KS, Yang SS, Lee JS. Targeting cancer cells with reactive oxygen and nitrogen species generated by atmospheric-­pressure air plasma. PLoS One. 2014;9(1): e86173. doi: 10.1371/journal.pone.0086173
  73. Lunov O, Zablotskii V, Churpita O, Chánová E, Syková E, Dejneka A, Kubinová S. Cell death induced by ozone and various non-thermal plasmas: therapeutic perspectives and limitations. Sci Rep. 2014;4:7129. doi: 10.1038/srep07129
  74. Kaushik N, Uddin N, Sim GB, Hong YJ, Baik KY, Kim CH, Lee SJ, Kaushik NK, Choi EH. Responses of solid tumor cells in DMEM to reactive oxygen species generated by non-thermal plasma and chemically induced ROS systems. Sci Rep. 2015;5:8587. doi: 10.1038/srep08587
  75. Mokhtari H, Farahmand L, Yaserian K, Jalili N, Majidzadeh-­A K. The antiproliferative effects of cold atmospheric plasma-­activated media on different cancer cell lines, the implication of ozone as a possible underlying mechanism. J Cell Physiol. 2019;234(5):6778—6782. doi: 10.1002/jcp.27428
  76. Jiang H, Li H. Prognostic values of tumoral MMP2 and MMP9 overexpression in breast cancer: a systematic review and meta-analysis. BMC Cancer. 2021;21(1):149. doi: 10.1186/s12885-021-07860-2
  77. Shishkina VV, Antakova LN, Zolotareva SN, Atyakshin DA Matrix metalloproteinases in extracellular matrix remodeling: molecular, cellular and tissue aspects. Journal of Anatomy and Histopathology. 2022;11(3):93—108. doi: 10.18499/2225-7357-2022-11-3-93-108. (In Russian).
  78. Karagülle OO, Yurttas AG. Ozone combined with doxorubicin exerts cytotoxic and anticancer effects on Luminal-­A subtype human breast cancer cell line. Rev Assoc Med Bras. 2022;68(4):507—513. doi: 10.1590/1806-9282.20211193
  79. Cailleau R, Young R, Olivé M, Reeves WJ Jr. Breast tumor cell lines from pleural effusions. J Natl Cancer Inst. 1974;53(3):661—674. doi: 10.1093/jnci/53.3.661
  80. Hero T, Bühler H, Kouam PN, Priesch-­Grzeszowiak B, Lateit T, Adamietz IA. The Triple-­negative Breast Cancer Cell Line MDA-MB 231 Is Specifically Inhibited by the Ionophore Salinomycin. Anticancer Res. 2019;39(6):2821—2827. doi: 10.21873/anticanres.13410
  81. Klanova M, Klener P. BCL‑2 Proteins in Pathogenesis and Therapy of B-Cell Non-­Hodgkin Lymphomas. Cancers (Basel). 2020;12(4):938. doi: 10.3390/cancers12040938
  82. Yıldırım M, Erkişi S, Yılmaz H, Ünsal N, İnaç E, Tanrıver Y, Koçak P. The apoptotic effect of ozone therapy on mitochondrial activity of highly metastatic breast cancer cell line MDA-MB‑231 using in vitro approaches. J Interv Med. 2022;5(2):64—71. doi: 10.1016/j.jimed.2022.03.004
  83. Song L, Zheng D, Xu J, Xu T, Liu Z, Zhang H, Li Y, Peng Y, Shi H. Improvement of TNBC immune checkpoint blockade with a microwave-­controlled ozone release nanosystem. J Control Release. 2022;351:954—969. doi: 10.1016/j.jconrel.2022.09.053
  84. Zheng D, Li Y, Song L, Xu T. Improvement of radiotherapy with an ozone-­carried liposome nano-system for synergizing cancer immune checkpoint blockade. Nano Today. 2022;47: 101675. doi: 10.1016/j.nantod.2022.101675.
  85. Zheng D, Li Y, Song L, Xu T. Ozone-loaded Pt(IV) prodrug self-assembled micelles with high bioavailability, low toxicity as a novel irradiation-­controlled release treatment and the immune microenvironment editor for triple-­negative breast cancer. JCO. 2023;41: e12575‑e12575. doi: 10.1200/JCO.2023.41.16_suppl.e12575
  86. Karagülle OO, Yurttaş AG. Synergistic effects of ozone with doxorubicin on the proliferation, apoptosis and metastatic profile of luminal-­B type human breast cancer cell line. Tissue Cell. 2023;85:102233. doi: 10.1016/j.tice.2023.102233
  87. Li Y, Pu R. Ozone Therapy for Breast Cancer: An Integrative Literature Review. Integr Cancer Ther. 2024;23:15347354241226667. doi: 10.1177/15347354241226667
  88. Studies on the effect of ozone on tumor growth and radiation effect (animal experiments). Fortschr Geb Röntgenstr Nuclear Medicine. 1972;12—14. (In German). [Teske HJ, Haller J, Badenberg B, Hoppe G. Untersuchungen zum Ozoneffekt auf Tumorwachstum und Strahlenwirkung (Tierversuche// Fortschr Geb Rontgenstr Nuklearmed. 1972;12—14].
  89. Teske HJ, Badenberg B, Hoffmann W. Animal experiments on the effect of ozone on tumor growth and on irradiation effect. Radiotherapy. 1973;145(2):155—160. (In German). [Teske HJ, Badenberg B, Hoffmann W. Tierexperimentelle Untersuchungen über die Ozonwirkung auf Tumorwachstum und Bestrahlungseffekt// Strahlentherapie. 1973;145(2):155—160.]
  90. Hernuss P, Müller-­Tyl E, Seitz W. Effect of ozone in radiotherapy for malignant tumors in the animal experiment. Fortschr Geb Rontgenstr Nuklearmed. 1973;0(0):196. (In German). [Hernuss P, Müller-­Tyl E, Seitz W. Uber den Ozoneffekt bei der Bestrahlung maligner Tumoren im Tierexperiment// Fortschr Geb Rontgenstr Nuklearmed. 1973;0(0):196.]
  91. Hernuss P, Müller-­Tyl E, Seitz W. Radiosensitizing effect of ozone in animal experiment. Radiotherapy. 1974;147(1):91—96. (In German). [Hernuss P, Müller-­Tyl E, Seitz W. Strahlensensibilisierender Effekt von Ozon im Tierversuch// Strahlentherapie. 1974;147(1):91—96.]
  92. Hernuss P, Müller-­Tyl E, Wicke L. Ozone and gynecologic radiotherapy. Radiotherapy. 1975;150(5):493—499. (In German). [Hernuss P, Müller-­Tyl E, Wicke L. Ozon und gynäkologische Strahlentherapie// Strahlentherapie. 1975;150(5):493—499.]
  93. Grundner HG, Bauer E, Tramer G, Utesch E. Animal experiment studies on the use of ozone in irradiated and non-irradiated tumors. I. Intravenous ozone therapy of Crocker’s sarcoma 180 and Ehrlich carcinoma in the white mouse. Radiotherapy. 1976;151(4):372—381. (In German). [Grundner HG, Bauer E, Tramer G, Utesch E. Tierexperimentelle Untersuchungen über die Anwendung von Ozon auf unbestrahlte und bestrahlte Tumoren. I. Intravenöse Ozonbehandlung des Crocker-­Sarkoms 180 und des Ehrlich-­Karzinoms der weissen Maus// Strahlentherapie. 1976;151(4):372—381.]
  94. Grundner HG, Erler U. Animal experiments on ozone therapy of non-irradiated and irradiated tumors. II. Ehrlich ascites carcinoma in vivo. Radiotherapy. 1976;151(6):522—529. (In German). [Grundner HG, Erler U. Tierexperimentelle Untersuchungen über die Anwendung von Ozon auf unbestrahlte und bestrahlte Tumoren. II. Ehrlich-­Asziteskarzinom in vivo// Strahlentherapie. 1976;151(6):522—529.]
  95. Grundner HG. Animal experiments on the use of ozone in irradiated and non-irradiated tumors. III. Ehrlich-­ascite carcinoma cells in vitro. Radiotherapy. 1976;151(5):480—486. (In German). [Grundner HG. Tierexperimentelle Untersuchungen über die Anwendung von Ozon auf unbestrahlte und bestrahlte Tumoren// Strahlentherapie. 1976;151(5):480—486.]
  96. Schulz S, Häussler U, Mandic R, Heverhagen JT, Neubauer A, Dünne AA, Werner JA, Weihe E, Bette M. Treatment with ozone/oxygen-­pneumoperitoneum results in complete remission of rabbit squamous cell carcinomas. Int J Cancer. 2008;122(10):2360—2367. doi: 10.1002/ijc.23382
  97. Menéndez S, Cepero J, Borrego L. Ozone Therapy in Cancer Treatment: State of the Art. Ozone: Science & Engineering. 2008;30(6):398—404. doi: 10.1080/01919510802473724
  98. Gooden MJ, de Bock GH, Leffers N, Daemen T, Nijman HW. The prognostic influence of tumour-­infiltrating lymphocytes in cancer: a systematic review with meta-analysis. Br J Cancer. 2011;105(1):93—103. doi: 10.1038/bjc.2011.189
  99. Wang E, Shibutani M, Nagahara H, Fukuoka T, Iseki Y, Okazaki Y, Kashiwagi S, Tanaka H, Maeda K. Prognostic value of the density of tumor-­infiltrating lymphocytes in colorectal cancer liver metastases. Oncol Lett. 2021;22(6):837. doi: 10.3892/ol.2021.13098
  100. Mei Z, Liu Y, Liu C, Cui A, Liang Z, Wang G, Peng H, Cui L, Li C. Tumour-­infiltrating inflammation and prognosis in colorectal cancer: systematic review and meta-analysis. Br J Cancer. 2014;110(6):1595—1605. doi: 10.1038/bjc.2014.46
  101. Rossmann A, Mandic R, Heinis J, Höffken H, Küssner O, Kinscherf R, Weihe E, Bette M. Intraperitoneal oxidative stress in rabbits with papillomavirus-­associated head and neck cancer induces tumoricidal immune response that is adoptively transferable. Clin Cancer Res. 2014;20(16):4289—4301. doi: 10.1158/1078-0432.CCR‑14-0677
  102. Kızıltan HŞ, Bayir AG, Yucesan G, Eris AH, İdin K, Karatoprak C, Aydin T, Akcakaya A, Mayadagli A. Medical ozone and radiotherapy in a peritoneal, Erlich-­ascites, tumor-cell model. Altern Ther Health Med. 2015;21(2):24—29.
  103. Kuroda K, Azuma K, Mori T, Kawamoto K, Murahata Y, Tsuka T, Osaki T, Ito N, Imagawa T, Itoh F, Okamoto Y. The Safety and Anti-­Tumor Effects of Ozonated Water in Vivo. Int J Mol Sci. 2015;16(10):25108—25120. doi: 10.3390/ijms161025108
  104. Minicucci EM, Ribeiro DA, da Silva GN, Pardini MI, Montovani JC, Salvadori DM. The role of the TP53 gene during rat tongue carcinogenesis induced by 4‑nitroquinoline 1‑oxide. Exp Toxicol Pathol. 2011;63(5):483—489. doi: 10.1016/j.etp.2010.03.009
  105. Miranda SR, Noguti J, Carvalho JG, Oshima CT, Ribeiro DA. Oxidative DNA damage is a preliminary step during rat tongue carcinogenesis induced by 4‑nitroquinoline 1‑oxide. J Mol Histol. 2011;42(2):181—186. doi: 10.1007/s10735-011-9323-9
  106. Dogan R, Hafız AM, Kiziltan HS, Yenigun A, Buyukpinarbaslili N, Eris AH, Ozturan O. Effectiveness of radiotherapy+ozone on tumoral tissue and survival in tongue cancer rat model. Auris Nasus Larynx. 2018;45(1):128—134. doi: 10.1016/j.anl.2017.03.017
  107. Singh V, Gupta R, Kumar S, Agarwal B. Role of Ozone Therapy and Cancer: Myth or Reality?. Journal of Medical Science And clinical Research. 2019;7(7). doi: 10.18535/jmscr/v7i7.127.
  108. Baeza-­Noci J, Pinto-­Bonilla R. Systemic Review: Ozone: A Potential New Chemotherapy. Int J Mol Sci. 2021;22(21):11796. doi: 10.3390/ijms222111796
  109. Bouleftour W, Rowinski E, Louati S, Sotton S, Wozny AS, Moreno-­Acosta P, Mery B, Rodriguez-­Lafrasse C, Magne N. A Review of the Role of Hypoxia in Radioresistance in Cancer Therapy. Med Sci Monit. 2021;27: e934116. doi: 10.12659/MSM.934116
  110. Joseph JP, Harishankar MK, Pillai AA, Devi A. Hypoxia induced EMT: A review on the mechanism of tumor progression and metastasis in OSCC. Oral Oncol. 2018;80:23—32. doi: 10.1016/j.oraloncology.2018.03.004
  111. Nagasawa H, Uto Y, Kirk KL, Hori H. Design of hypoxia-­targeting drugs as new cancer chemotherapeutics. Biol Pharm Bull. 2006;29(12):2335—2342. doi: 10.1248/bpb.29.2335
  112. Clavo B, Pérez JL, López L, Suárez G, Lloret M, Rodríguez V, Macías D, Santana M, Hernández MA, Martín-­Oliva R, Robaina F. Ozone Therapy for Tumor Oxygenation: a Pilot Study. Evid Based Complement Alternat Med. 2004;1(1):93—98. doi: 10.1093/ecam/neh009
  113. Clavo B, Ruiz A, Lloret M, Suárez G, Macías D, Rodríguez V, Hernández MA, Martín-­Oliva R, Quintero S, Cuyás JM, Robaina F. Adjuvant Ozonetherapy in Advanced Head and Neck Tumors: A Comparative Study. Evid Based Complement Alternat Med. 2004;1(3):321—325. doi: 10.1093/ecam/neh038
  114. Petrucci MT, Gallucci C, Agrillo A, Mustazza MC, Foà R. Role of ozone therapy in the treatment of osteonecrosis of the jaws in multiple myeloma patients. Haematologica. 2007;92(9):1289—1290. doi: 10.3324/haematol.11096
  115. Borrelli E. Treatment of advanced non-small-cell lung cancer with oxygen ozone therapy and mistletoe: An integrative approach. Eur. J. Integr. Med. 2012;4: 130.
  116. Megele R, Riemenschneider MJ, Dodoo-­Schittko F, Feyrer M, Kleindienst A. Intra-tumoral treatment with oxygen-­ozone in glioblastoma: A systematic literature search and results of a case series. Oncol Lett. 2018;16(5):5813—5822. doi: 10.3892/ol.2018.9397

Copyright (c) 2024 Andreev P.Y., Moshurov I.P., Korotkih N.V., Shishkina V.V., Samoilenko T.V., Goryushkina E.S., Antakova L.N.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies