Hypolypidemic therapy in the XXI century: what is new?

Cover Page

Cite item

Abstract

Relevance. The leading position in mortality throughout the world is occupied by cardiovascular diseases, caused be atherosclerosis process. Statins used to be the gold standard of lipid-lowering therapy for a long time due to their high efficacy, optimal tolerance and safety. Nowadays it has been proved that statins reduce low-density lipoprotein levels in high doses by more than 50 %, in medium doses for about 30–49 %. However, often achieving the target level of lipoproteins is not possible due to a variety of reasons, what became a motivation for creating new drugs. The evidence base for the newest lipid-lowering drugs, some of which have already been approved for clinical use according to the publications in the scientific databases Scopus, PubMed, Web of Science for last 10 years. Main results of the most significant clinical trials of drugs’ effectiveness and safety are described including medicines: alirocumab, inclisiran, bococizumab, pelacarsen, mipomersen, bempedoic acid, lomitapide, evinocumab and also methods of therapeutic lipoprotein apheresis. Dyslipidemia pathogenetic points are considered like inhibition of proprotein convertase subtilisin-kexin type 9, suppression of genes synthesizing lipoprotein (a) by antisense oligonucleotides, cholesterol synthesis suppression by inactivation of adenosine triphosphate-citrate lyase enzyme; the action of microsomal inhibitors of triglyceride transfer protein. Conclusion. Searching for new lipid-lowering rational regimens is still ongoing, therefore it is necessary to carefully analyze effectiveness and safety profile for the newest drugs. Some of them like inhibition of proprotein convertase subtilisin-kexin type 9 are actively used in medicine today, while others, the most promising, will be in the future. Ensuring of atherogenic lipoproteins complete control will subsequently make a significant contribution to the primary and secondary cardiovascular diseases prevention, which will save many human lives.

Full Text

Table 1 Drugs from the group of iPCSK9, registered in Russia

Title

Structure

Release form

Dosage

Contraindications

Evolocumab

monoclonal antibody

single-dose prefilled autoinjector; 140 mg per в 1 ml

the usual dose is either 140 mg every 2 weeks or 420 mg once a month

the patient’s age is under 18 years with heterozygous hypercholesterolemia; age up to 12 years with homozygous hypercholesterolemia

Alirocumab

monoclonal antibody

single-dose prefilled

autoinjector; 75 mg per

1 ml;

150 mg per 1 мл

the recommended dose is 75–150 mg once every 2 weeks administered subcutaneously, or 300 mg once every 4 weeks

individual hypersensitivity, pregnancy and lactation, children under 18 years of age.

Inclisiran

small interfering ribonucleic acid (siRNA)

prefilled syringe; 284 mg per 1,5 ml;

The recommended dose of Leqvio is 284 mg administered as a single subcutaneous injection: initially, again at 3 months, followed by every 6 months

hypersensitivity to the drug

Fig.1. The Scheme of cholesterol synthesis inhibiting by bempedoic acid Bempedoic acid blocks the action of the enzyme ATP citrate lyase, which prevents the conversion of citrate to acetyl-­CoA that inhibits cholesterol synthesis. By comparison, statins are involved in inhibiting of cholesterol synthesis a little bit later

×

About the authors

Natalya Yu. Ob’edkova

Kursk State Medical University

Author for correspondence.
Email: obedkovany@kursksmu.net
ORCID iD: 0000-0003-2072-5511
SPIN-code: 7700-0707
Kursk, Russian Federation

Diana N. Usacheva

Kursk State Medical University

Email: obedkovany@kursksmu.net
ORCID iD: 0009-0005-7029-2541
Kursk, Russian Federation

Galina S. Mal

Kursk State Medical University

Email: obedkovany@kursksmu.net
ORCID iD: 0000-0001-6290-1195
SPIN-code: 4371-7708
Kursk, Russian Federation

Evgenij G. Ob’edkov

Kursk State Medical University

Email: obedkovany@kursksmu.net
ORCID iD: 0000-0003-0566-1476
Kursk, Russian Federation

References

  1. Chilbert MR, VanDuyn D, Salah S, Clark CM, Ma Q. Combination Therapy of Ezetimibe and Rosuvastatin for Dyslipidemia: Current Insights. Drug Des Devel Ther. 2022;16:2177–2186. doi: 10.2147/DDDT.S332352
  2. Lee SA, Kim W, Hong TJ, Ahn Y, Kim MH, Hong SJ, Kim BS, Kim SY, Chae IH, Kim BJ, Rhee MY, Shin JH, Kang TS, Cho JM, Kim JS, Lee CW. Effects of Fixed-dose Combination of Low-intensity Rosuvastatin and Ezetimibe Versus Moderate-­intensity Rosuvastatin Monotherapy on Lipid Profiles in Patients With Hypercholesterolemia: A Randomized, Double-­blind, Multicenter, Phase III Study. Clin Ther. 2021;43(9):1573–1589. doi: 10.1016/j.clinthera.2021.07.016
  3. Ob’edkova NYu, Mal’ GS, Selihova EM, Ob’edkov EG. Progression of hyperlipidemia as a result of a new coronavirus infection in patients with coronary heart disease. Innova. 2023;(31):59–62. (In Russian).
  4. Medvedeva EA, Grigorenko EA, Mitkovskaya NP. Innovative lipid-­lowering therapy: experience of inclisiran use in the Republic of Belarus. Russian Journal of Cardiology. 2023;28(4):5417. (In Russian). doi: 10.15829/1560-4071-2023-5417
  5. Diaz R, Li QH, Bhatt DL, Bittner VA, Baccara-­Dinet MT, Goodman SG, Jukema JW, Kimura T, Parkhomenko A, Pordy R, Reiner Ž, Roe MT, Szarek M, Tse HF, White HD, Zahger D, Zeiher AM, Schwartz GG, Steg PG; ODYSSEY OUTCOMES Committees and Investigators. Intensity of statin treatment after acute coronary syndrome, residual risk, and its modification by alirocumab: insights from the ODYSSEY OUTCOMES trial. Eur J Prev Cardiol. 2021;28(1):33–43. doi: 10.1177/2047487320941987
  6. Jukema JW, Szarek M, Zijlstra LE, de Silva HA, Bhatt DL, Bittner VA, Diaz R, Edelberg JM, Goodman SG, Hanotin C, Harrington RA, Karpov Y, Moryusef A., Pordy R, Prieto JC, Roe MT, White HD, Zeiher AM, Schwartz GG, Steg PG; ODYSSEY OUTCOMES Committees and Investigators. Alirocumab in Patients With Polyvascular Disease and Recent Acute Coronary Syndrome: ODYSSEY OUTCOMES Trial. J Am Coll Cardiol. 2019;74(9):1167–1176. doi: 10.1016/j.jacc.2019.03.013
  7. Räber L, Ueki Y, Otsuka T, Losdat S, Häner JD, Lonborg J, Fahrni G, Iglesias JF, van Geuns RJ, Ondracek AS, Radu Juul Jensen MD, Zanchin C, Stortecky S, Spirk D, Siontis GCM, Saleh L, Matter CM, Daemen J, Mach F, Heg D, Windecker S, Engstrøm T, Lang IM, Koskinas KC; PACMAN-AMI collaborators. Effect of Alirocumab Added to High-­Intensity Statin Therapy on Coronary Atherosclerosis in Patients With Acute Myocardial Infarction: The PACMAN-AMI Randomized Clinical Trial. JAMA. 2022;10;327(18):1771–1781. doi: 10.1001/jama.2022.5218
  8. Pérez de Isla L, Díaz-­Díaz JL, Romero MJ, Muñiz-­Grijalvo O, Mediavilla JD, Argüeso R, Sánchez Muñoz-­Torrero JF, Rubio P, Álvarez-­Baños P, Ponte P, Mañas D, Suárez Gutierrez L, Cepeda JM, Casañas M, Fuentes F, Guijarro C, Ángel Barba M, Saltijeral Cerezo A, Padró T, Mata P; SAFEHEART Study Group. Alirocumab and Coronary Atherosclerosis in Asymptomatic Patients with Familial Hypercholesterolemia: The ARCHITECT Study. Circulation. 2023;147(19):1436–1443. doi: 10.1161/CIRCULATIONAHA.122.062557
  9. Henry P, Cariou B, Farnier M, Lakhdari SL, Detournay B. Lipid-lowering efficacy and safety of alirocumab in a real-life setting in France: Insights from the ODYSSEY APPRISE study. Arch Cardiovasc Dis. 2023;116(1):3–8. doi: 10.1016/j.acvd.2022.10.004
  10. Sopenko IV, Rasova SA, Semenikhina PA, Ulanova TV. Modern aspects of hypolipidemic therapy: safety and efficiency. IScience. 2021;(6–3(74));102–110 (In Russian).
  11. Shikaleva AA, Maximov ML, Kiseleva NM. Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors in the treatment of dyslipidemia. Meditsinskiy sovet = Medical Council. 2020;(21):12–18. (In Russian) doi: 10.21518/2079-701X-2020-21-12-18
  12. Raal FJ, Kallend D, Ray KK, Turner T, Koenig W, Wright RS, Wijngaard PLJ, Curcio D, Jaros MJ, Leiter LA, Kastelein JJP.; ORION‑9 Investigators. Inclisiran for the Treatment of Heterozygous Familial Hypercholesterolemia. N Engl J Med. 2020;382(16):1520–1530. doi: 10.1056/NEJMoa1913805
  13. Ennezat PV, Guerbaai RA, Maréchaux S, Le Jemtel TH, François P. Extent of Low-density Lipoprotein Cholesterol Reduction and All-cause and Cardiovascular Mortality Benefit: A Systematic Review and Meta-analysis. J Cardiovasc Pharmacol. 2023;81(1):35–44. doi: 10.1097/FJC.0000000000001345
  14. Kudina EV, Samkova IA, Larina VN. Hypolipidemic therapy: evidence-­based effectiveness and new perspectives. Consilium Medicum. 2020;22(10): 55–60. (In Russian). doi.org/10.26442/20751753.2020.10.200292
  15. Ray KK, Troquay RPT, Visseren FLJ, Leiter LA, Scott Wright R, Vikarunnessa S, Talloczy Z, Zang X, Maheux P, Lesogor A, Landmesser U. Long-term efficacy and safety of inclisiran in patients with high cardiovascular risk and elevated LDL cholesterol (ORION‑3): results from the 4‑year open-label extension of the ORION‑1 trial. Lancet Diabetes Endocrinol. 2023;11(2):109–119. doi: 10.1016/S2213-8587(22)00353-9
  16. Ray KK, Kallend D, Leiter LA, Raal FJ, Koenig W, Jaros MJ, Schwartz GG, Landmesser U, Garcia Conde L, Wright RS; ORION‑11 Investigators. Effect of inclisiran on lipids in primary prevention: the ORION‑11 trial. Eur Heart J. 2022;43(48):5047–5057. doi: 10.1093/eurheartj/ehac615
  17. Reijman MD, Schweizer A, Peterson ALH, Bruckert E, Stratz C, Defesche JC, Hegele RA, Wiegman A. Rationale and design of two trials assessing the efficacy, safety, and tolerability of inclisiran in adolescents with homozygous and heterozygous familial hypercholesterolaemia. Eur J Prev Cardiol. 2022;29(9):1361–1368. doi: 10.1093/eurjpc/zwac025
  18. Zyryanov SK, Butranova OI. New opportunities for lowering low-density lipoprotein cholesterol: comparative characteristics of PCSK9‑targeted therapy. Russian Journal of Cardiology. 2022;27(11):5271. (In Russian). doi: 10.15829/1560-4071-2022-5271
  19. Grześk G, Dorota B, Wołowiec Ł, Wołowiec A, Osiak J, Kozakiewicz M, Banach J. Safety of PCSK9 inhibitors. Biomed Pharmacother. 2022;156:113957. doi: 10.1016/j.biopha.2022
  20. Sosnowska B, Surma S, Banach M. Targeted Treatment against Lipoprotein (a): The Coming Breakthrough in Lipid Lowering Therapy. Pharmaceuticals (Basel). 2022;15(12):1573. doi: 10.3390/ph15121573
  21. Kosmas CE, Bousvarou MD, Papakonstantinou EJ, Tsamoulis D, Koulopoulos A, Echavarria Uceta R, Guzman E, Rallidis LS. Novel Pharmacological Therapies for the Management of Hyperlipoproteinemia(a). Int J Mol Sci. 2023;24(17):13622. doi: 10.3390/ijms241713622
  22. Korneva VA, Kuznetsova TY, Julius U. Modern Approaches to Lower Lipoprotein(a) Concentrations and Consequences for Cardiovascular Diseases. Biomedicines. 2021;9(9):1271. doi: 10.3390/biomedicines9091271
  23. Chan DC, Watts GF. The Promise of PCSK9 and Lipoprotein(a) as Targets for Gene Silencing Therapies. Clin Ther. 2023; S0149–2918(23)00258–8. doi: 10.1016/j.clinthera.2023.07.008
  24. Tsimikas S, Karwatowska-­Prokopczuk E, Gouni-­Berthold I, Tardif JC, Baum SJ, Steinhagen-­Thiessen E, Shapiro MD, Stroes ES, Moriarty PM, Nordestgaard BG, Xia S, Guerriero J, Viney NJ, O’Dea L, Witztum JL; AKCEA-APO(a)-LRx Study Investigators. Lipoprotein(a) Reduction in Persons with Cardiovascular Disease. N Engl J Med. 2020;382(3):244–255. doi: 10.1056/NEJMoa1905239
  25. Chambergo-­Michilot D, Alur A, Kulkarni S, Agarwala A. Mipomersen in Familial Hypercholesterolemia: An Update on Health-­Related Quality of Life and Patient-­Reported Outcomes. Vasc Health Risk Manag. 2022;18:73–80. doi: 10.2147/VHRM.S191965
  26. Nurmohamed NS, Navar AM, Kastelein JJP. New and Emerging Therapies for Reduction of LDL–Cholesterol and Apolipoprotein B: JACC Focus Seminar 1/4. J Am Coll Cardiol. 2021;77(12):1564–1575. doi: 10.1016/j.jacc.2020.11.079
  27. Tummala R, Gupta M, Devanabanda AR, Bandyopadhyay D, Aronow WS, Ray KK, Mamas M, Ghosh RK. Bempedoic acid and its role in contemporary management of hyperlipidemia in atherosclerosis. Ann Med. 2022;54(1):1287–1296. doi: 10.1080/07853890.2022.2059559
  28. Ruscica M, Sirtori CR, Carugo S, Banach M, Corsini A. Bempedoic Acid: for Whom and When. Curr Atheroscler Rep. 2022;24(10):791–801. doi: 10.1007/s11883-022-01054-2
  29. Jialal I, Ramakrishnan N. Bempedoic acid: a novel oral LDL-cholesterol lowering agent. Int J Physiol Pathophysiol Pharmacol. 2022;14(2):84–89.
  30. Ballantyne CM, Bays H, Catapano AL, Goldberg A, Ray KK, Saseen JJ. Role of Bempedoic Acid in Clinical Practice. Cardiovasc Drugs Ther. 2021;35(4):853–864. doi: 10.1007/s10557-021-07147-5
  31. Cicero AFG, Fogacci F, Hernandez AV, Banach M; Lipid and Blood Pressure Meta-­Analysis Collaboration (LBPMC) Group and the International Lipid Expert Panel (ILEP). Efficacy and safety of bempedoic acid for the treatment of hypercholesterolemia: A systematic review and meta-analysis. PLoS Med. 2020;17(7): e1003121. doi: 10.1371/journal.pmed.1003121
  32. Ray KK, Bays HE, Catapano AL, Lalwani ND, Bloedon LT, Sterling LR, Robinson PL, Ballantyne CM; CLEAR Harmony Trial. Safety and Efficacy of Bempedoic Acid to Reduce LDL Cholesterol. N Engl J Med. 2019;380(11):1022–1032. doi: 10.1056/NEJMoa1803917
  33. Stefanutti C. Lomitapide-a Microsomal Triglyceride Transfer Protein Inhibitor for Homozygous Familial Hypercholesterolemia. Curr Atheroscler Rep. 2020;22(8):38. doi: 10.1007/s11883-020-00858-4
  34. Zheng Y, Hu Y, Han Z, Yan F, Zhang S, Yang Z, Zhao F, Li L, Fan J, Wang R, Luo Y. Lomitapide ameliorates middle cerebral artery occlusion-­induced cerebral ischemia/reperfusion injury by promoting neuronal autophagy and inhibiting microglial migration. CNS Neurosci Ther. 2022;28(12):2183–2194. doi: 10.1111/cns.13961
  35. Larrey D, D’Erasmo L, O’Brien S, Arca M; Italian Working Group on Lomitapide. Long-term hepatic safety of lomitapide in homozygous familial hypercholesterolaemia. Liver Int. 2023;43(2):413–423. doi: 10.1111/liv.15497
  36. Cefalù AB, D’Erasmo L, Iannuzzo G, Noto D, Giammanco A, Montali A, Zambon A, Forte F, Suppressa P, Giannini S, Barbagallo CM, Ganci A, Nardi E, Vernuccio F, Caldarella R, Ciaccio M, Arca M, Averna M. Efficacy and safety of lomitapide in familial chylomicronaemia syndrome. Atherosclerosis. 2022;359:13–19. doi: 10.1016/j.atherosclerosis.2022.08.017
  37. D’Erasmo L, Bini S, Arca M. Rare Treatments for Rare Dyslipidemias: New Perspectives in the Treatment of Homozygous Familial Hypercholesterolemia (HoFH) and Familial Chylomicronemia Syndrome (FCS). Curr Atheroscler Rep. 2021;23(11):65. doi: 10.1007/s11883-021-00967-8
  38. Sosnowska B, Adach W, Surma S, Rosenson RS, Banach M. Evinacumab, an ANGPTL3 Inhibitor, in the Treatment of Dyslipidemia. J Clin Med. 2022;12(1):168. doi: 10.3390/jcm12010168
  39. Deng M, Kutrolli E, Sadewasser A, Michel S, Joibari MM, Jaschinski F, Olivecrona G, Nilsson SK, Kersten S. ANGPTL4 silencing via antisense oligonucleotides reduces plasma triglycerides and glucose in mice without causing lymphadenopathy. J Lipid Res. 2022;63(7):100237. doi: 10.1016/j.jlr.2022.100237
  40. Sun T, Zhan W, Wei L, Xu Z, Fan L, Zhuo Y, Wang C, Zhang J. Circulating ANGPTL3 and ANGPTL4 levels predict coronary artery atherosclerosis severity. Lipids Health Dis. 2021;20(1):154. doi: 10.1186/s12944-021-01580-z
  41. Chen R, Lin S, Chen X. The promising novel therapies for familial hypercholesterolemia. J Clin Lab Anal. 2022;36(7): e24552. doi: 10.1002/jcla.24552
  42. Ahmad Z, Banerjee P, Hamon S, Chan KC, Bouzelmat A, Sasiela WJ, Pordy R, Mellis S, Dansky H, Gipe DA, Dunbar RL. Inhibition of Angiopoietin-­Like Protein 3 With a Monoclonal Antibody Reduces Triglycerides in Hypertriglyceridemia. Circulation. 2019;140(6):470–486. doi: 10.1161/CIRCULATIONAHA.118.039107
  43. Harada-­Shiba M, Ali S, Gipe DA, Gasparino E, Son V, Zhang Y, Pordy R, Catapano AL. A randomized study investigating the safety, tolerability, and pharmacokinetics of evinacumab, an ANGPTL3 inhibitor, in healthy Japanese and Caucasian subjects. Atherosclerosis. 2020;314:33–40. doi: 10.1016/j.atherosclerosis.2020.10.013
  44. Parhofer KG. Apheresis: What Should a Clinician Know? Curr Atheroscler Rep. 2023;25(3):77–83. doi: 10.1007/s11883-023-01081-7
  45. Kayikcioglu M. LDL Apheresis and Lp (a) Apheresis: A Clinician’s Perspective. Curr Atheroscler Rep. 2021;23(4):15. doi: 10.1007/s11883-021-00911-w.
  46. Taylan C, Weber LT. An update on lipid apheresis for familial hypercholesterolemia. Pediatr Nephrol. 2023;38(2):371–382. doi: 10.1007/s00467-022-05541-1

Supplementary files

Supplementary Files
Action
1. Fig.1. The Scheme of cholesterol synthesis inhibiting by bempedoic acid Bempedoic acid blocks the action of the enzyme ATP citrate lyase, which prevents the conversion of citrate to acetyl-CoA that inhibits cholesterol synthesis. By comparison, statins are involved in inhibiting of cholesterol synthesis a little bit later

Download (173KB)

Copyright (c) 2024 Ob’edkova N.Y., Usacheva D.N., Mal G.S., Ob’edkov E.G.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies