Abnormal methylation of PRDM16 and PTPRN2 genes in chorionic villi in miscarriage

Cover Page

Cite item

Abstract

Relevance. Abnormal epigenetic regulation of genes responsible for the development of the embryo and placenta is associated with many pregnancy pathologies. Aim. The aim of this work was to analyze the prevalence of abnormal methylation of the PRDM16 and PTPRN2 genes in chorionic villi of spontaneous abortions with normal karyotype and with the most frequent aneuploidies (trisomy 16 and monosomy X). Materials and Methods. The methylation profile was evaluated using targeted bisulfite massive parallel sequencing in chorionic villi of induced abortions (n = 10), spontaneous abortions with normal karyotype (n = 39), trisomy 16 (n = 17) and monosomy X (n = 20) and peripheral blood lymphocytes of healthy volunteers (n = 6). Results and Discussion. In analyzed genes, differential methylation of individual CpG sites was found in chorionic villi of spontaneous abortions. Despite the absence of significant differences between the groups in the average level of methylation in analyzed gene regions, abnormal methylation of the PRDM16 and PTPRN2 genes were detected for 33 % and 5 % of spontaneous abortions, respectively, indicating a high incidence of epigenetic abnormalities in these genes in the chorionic villi of spontaneous abortions. The level of methylation of the PRDM16 gene significantly correlated with the level of methylation of the retrotransposon LINE-1, which indicates the generalized nature of methylation disorders in spontaneous abortions. Finally, the level of methylation of the PTPRN2 gene depended on the age of mothers of spontaneous abortions with monosomy X, which raises the question of the influence of maternal factors on the methylation profile in this group of spontaneous abortions. Conclusion. The results indicate that epigenetic disorders of the PRDM16 gene may be associated with spontaneous termination of pregnancy in the first trimester.

About the authors

Stanislav A. Vasilyev

Tomsk National Research Medical Center; National Research Tomsk State University

Author for correspondence.
Email: stanislav.vasilyev@medgenetics.ru
ORCID iD: 0000-0002-5301-070X
SPIN-code: 8087-5222
Tomsk, Russian Federation

Oksana Yu. Vasilyeva

Tomsk National Research Medical Center

Email: stanislav.vasilyev@medgenetics.ru
ORCID iD: 0000-0001-5797-0014
SPIN-code: 3582-1273
Tomsk, Russian Federation

Bismark Oppong-Peprah

National Research Tomsk State University

Email: stanislav.vasilyev@medgenetics.ru
Tomsk, Russian Federation

Victoria V. Demeneva

Tomsk National Research Medical Center

Email: stanislav.vasilyev@medgenetics.ru
ORCID iD: 0000-0002-5315-4914
SPIN-code: 3631-0953
Tomsk, Russian Federation

Andrey S. Zuev

Tomsk National Research Medical Center

Email: stanislav.vasilyev@medgenetics.ru
ORCID iD: 0000-0001-9474-9335
SPIN-code: 3235-1754
Tomsk, Russian Federation

Elena A. Sazhenova

Tomsk National Research Medical Center

Email: stanislav.vasilyev@medgenetics.ru
ORCID iD: 0000-0003-3875-3932
SPIN-code: 8788-4112
Tomsk, Russian Federation

Tatiana V. Nikitina

Tomsk National Research Medical Center

Email: stanislav.vasilyev@medgenetics.ru
ORCID iD: 0000-0002-4230-6855
SPIN-code: 8941-1605
Tomsk, Russian Federation

Ekaterina N. Tolmacheva

Tomsk National Research Medical Center

Email: stanislav.vasilyev@medgenetics.ru
ORCID iD: 0000-0001-6427-3276
SPIN-code: 7837-4073
Tomsk, Russian Federation

References

  1. Edmonds DK, Lindsay KS, Miller JF, Williamson E, Wood PJ. Early embryonic mortality in women. Fertil Steril. 1982;38(4): 447-53.
  2. Ford HB, Schust DJ. Recurrent pregnancy loss: etiology, diagnosis, and therapy. Rev Obstet Gynecol. 2009;2(2):76-83.
  3. Eiben B, Bartels I, Bahr-Porsch S, Borgmann S, Gatz G, Gellert G, Goebel R, Hammans W, Hentemann M, Osmers R. Cytogenetic analysis of 750 spontaneous abortions with the direct-preparation method of chorionic villi and its implications for studying genetic causes of pregnancy wastage. Am J Hum Genet. 1990;47(4):656-63.
  4. Menasha J, Levy B, Hirschhorn K, Kardon NB. Incidence and spectrum of chromosome abnormalities in spontaneous abortions: new insights from a 12-year study. Genet Med. 2005;7(4): 251-63. doi: 00125817-200504000-00005
  5. Baranov VS, Kuznetsova TV. Cytogenetics of human embryonic development. 2007. Saint-Petersburs. Russia. 639 p. (In Russian).
  6. Vlahos A, Mansell T, Saffery R, Novakovic B. Human placental methylome in the interplay of adverse placental health, environmental exposure, and pregnancy outcome. PLoS Genet. 2019;15(8): e1008236. doi: 10.1371/journal.pgen.1008236
  7. Tolmacheva EN, Vasilyev SA, Nikitina TV, Lytkina ES, Sazhenova EA, Zhigalina DI, Vasilyeva OY, Markov AV, Demeneva VV, Tashireva LA, Kashevarova AA, Lebedev IN. Identification of differentially methylated genes in first-trimester placentas with trisomy 16. Sci Rep. 2022;12(1):1166. doi: 10.1038/s41598-021-04107-9
  8. Vasilyev SA, Tolmacheva EN, Vasilyeva OY, Markov AV, Zhigalina DI, Zatula LA, Lee VA, Serdyukova ES, Sazhenova EA, Nikitina TV, Kashevarova AA, Lebedev IN. LINE-1 retrotransposon methylation in chorionic villi of first trimester miscarriages with aneuploidy. J Assist Reprod Genet. 2021;38(1):139-149. doi: 10.1007/s10815-020-02003-1
  9. Lebedev IN, Ostroverkhova NV, Nikitina TV, Sukhanova NN, Nazarenko SA. Features of chromosomal abnormalities in spontaneous abortion cell culture failures detected by interphase FISH analysis. Eur J Hum Genet. 2004;12(7):513-20. doi: 10.1038/sj.ejhg.5201178
  10. Vasilyev SA, Timoshevsky VA, Lebedev IN. Cytogenetic mechanisms of aneuploidy in somatic cells of chemonuclear industry professionals with incorporated plutonium-239. Russian Journal of Genetics. 2010;46(11):1381-1385. doi: 10.1134/s1022795410110141
  11. Vasilyev SA, Tolmacheva EN, Kashevarova AA, Sazhenova EA, Lebedev IN. Methylation status of LINE-1 retrotransposon in chromosomal mosaicism during the early stages of human embryonic development. Molecular Biology (Moscow). 2015;49(1):144-152. doi: 10.1134/S0026893314060193. (In Russian).
  12. Nishikata I, Sasaki H, Iga M, Tateno Y, Imayoshi S, Asou N, Nakamura T, Morishita K. A novel EVI1 gene family, MEL1, lacking a PR domain (MEL1S) is expressed mainly in t(1;3)(p36; q21)-positive AML and blocks G-CSF-induced myeloid differentiation. Blood. 2003;102(9):3323-32. doi: 10.1182/blood-2002-12-3944
  13. Mochizuki N, Shimizu S, Nagasawa T, Tanaka H, Taniwaki M, Yokota J, Morishita K. A novel gene, MEL1, mapped to 1p36.3 is highly homologous to the MDS1/EVI1 gene and is transcriptionally activated in t(1;3)(p36; q21)-positive leukemia cells. Blood. 2000;96(9):3209-14.
  14. Bjork B, Vieira A, Faust S, Camper S, Murray J, Beier D. Phenotypic, genetic, and developmental characterization of CPO1, a recessive ENU-induced mouse model of cleft palate. Mouse Molecular Genetics. Cold Spring Harbor Press, Woodbury, NY. 2006. 149 p.
  15. Kajimura S, Seale P, Tomaru T, Erdjument-Bromage H, Cooper MP, Ruas JL, Chin S, Tempst P, Lazar MA, Spiegelman BM. Regulation of the brown and white fat gene programs through a PRDM16/CtBP transcriptional complex. Genes Dev. 2008;22(10):1397-409. doi: 10.1101/gad.1666108
  16. Horn KH, Warner DR, Pisano M, Greene RM. PRDM16 expression in the developing mouse embryo. Acta Histochem. 2011;113(2):150-5. doi: 10.1016/j.acthis.2009.09.006
  17. Chen P, Piaggi P, Traurig M, Bogardus C, Knowler WC, Baier LJ, Hanson RL. Differential methylation of genes in individuals exposed to maternal diabetes in utero. Diabetologia. 2017; 60(4): 645-655. doi: 10.1007/s00125-016-4203-1
  18. Taschereau A, Thibeault K, Allard C, Juvinao-Quintero D, Perron P, Lutz SM, Bouchard L, Hivert MF. Maternal glycemia in pregnancy is longitudinally associated with blood DNAm variation at the FSD1L gene from birth to 5 years of age. Clin Epigenetics. 2023;15(1):107. doi: 10.1186/s13148-023-01524-7
  19. Cote S, Gagne-Ouellet V, Guay SP, Allard C, Houde AA, Perron P, Baillargeon JP, Gaudet D, Guerin R, Brisson D, Hivert MF, Bouchard L. PPARGC1alpha gene DNA methylation variations in human placenta mediate the link between maternal hyperglycemia and leptin levels in newborns. Clin Epigenetics. 2016;8:72. doi: 10.1186/s13148-016-0239-9
  20. Lim IY, Lin X, Teh AL, Wu Y, Chen L, He M, Chan SY, MacIsaac JL, Chan JKY, Tan KH, Chong MFF, Kobor MS, Godfrey KM, Meaney MJ, Lee YS, Eriksson JG, Gluckman PD, Chong YS, Karnani N. Dichotomy in the Impact of Elevated Maternal Glucose Levels on Neonatal Epigenome. J Clin Endocrinol Metab. 2022;107(3): e1277-e1292. doi: 10.1210/clinem/dgab710
  21. Wang WJ, Huang R, Zheng T, Du Q, Yang MN, Xu YJ, Liu X, Tao MY, He H, Fang F, Li F, Fan JG, Zhang J, Briollais L, Ouyang F, Luo ZC. Genome-Wide Placental Gene Methylations in Gestational Diabetes Mellitus, Fetal Growth and Metabolic Health Biomarkers in Cord Blood. Front Endocrinol (Lausanne). 2022;13:875180. doi: 10.3389/fendo.2022.875180
  22. Sugiyama T, Benitez CM, Ghodasara A, Liu L, McLean GW, Lee J, Blauwkamp TA, Nusse R, Wright CV, Gu G, Kim SK. Reconstituting pancreas development from purified progenitor cells reveals genes essential for islet differentiation. Proc Natl Acad Sci USA. 2013;110(31):12691-6. doi: 10.1073/pnas.1304507110
  23. Sasaki A, Murphy KE, Briollais L, McGowan PO, Matthews SG. DNA methylation profiles in the blood of newborn term infants born to mothers with obesity. PLoS One. 2022;17(5): e0267946. doi: 10.1371/journal.pone.0267946
  24. Seale P, Conroe HM, Estall J, Kajimura S, Frontini A, Ishibashi J, Cohen P, Cinti S, Spiegelman BM. Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice. J Clin Invest. 2011;121(1):96-105. doi: 10.1172/JCI44271
  25. Benton MC, Johnstone A, Eccles D, Harmon B, Hayes MT, Lea RA, Griffiths L, Hoffman EP, Stubbs RS, Macartney-Coxson D. An analysis of DNA methylation in human adipose tissue reveals differential modification of obesity genes before and after gastric bypass and weight loss. Genome Biol. 2015;16(1):8. doi: 10.1186/s13059-014-0569-x
  26. Serrano A, Asnani-Kishnani M, Couturier C, Astier J, Palou A, Landrier JF, Ribot J, Bonet ML. DNA Methylation Changes are Associated with the Programming of White Adipose Tissue Browning Features by Resveratrol and Nicotinamide Riboside Neonatal Supplementations in Mice. Nutrients. 2020; 12(2). doi: 10.3390/nu12020461
  27. Willi-Monnerat S, Migliavacca E, Surdez D, Delorenzi M, Luthi-Carter R, Terskikh AV. Comprehensive spatiotemporal transcriptomic analyses of the ganglionic eminences demonstrate the uniqueness of its caudal subdivision. Mol Cell Neurosci. 2008;37(4):845-56. doi: 10.1016/j.mcn.2008.01.009
  28. Corley MJ, Vargas-Maya N, Pang APS, Lum-Jones A, Li D, Khadka V, Sultana R, Blanchard DC, Maunakea AK. Epigenetic Delay in the Neurodevelopmental Trajectory of DNA Methylation States in Autism Spectrum Disorders. Front Genet. 2019;10:907. doi: 10.3389/fgene.2019.00907
  29. Shull LC, Sen R, Menzel J, Goyama S, Kurokawa M, Artinger KB. The conserved and divergent roles of Prdm3 and Prdm16 in zebrafish and mouse craniofacial development. Dev Biol. 2020;461(2):132-144. doi: 10.1016/j.ydbio.2020.02.006
  30. Luedi PP, Dietrich FS, Weidman JR, Bosko JM, Jirtle RL, Hartemink AJ. Computational and experimental identification of novel human imprinted genes. Genome Res. 2007;17(12):1723-30. doi: 10.1101/gr.6584707
  31. Pi L, Zhang Z, Gu Y, Wang X, Wang J, Xu J, Liu J, Zhang X, Du J. DNA methylation profiling in recurrent miscarriage. Peer J. 2020;8: e8196. doi: 10.7717/peerj.8196
  32. Nishimura H, Ikawa Y, Kajikawa E, Shimizu-Mizuno N, Hiver S, Tabata-Okamoto N, Mori M, Kitajima T, Hayashi T, Yoshimura M, Umeda M, Nikaido I, Kurokawa M, Watanabe T, Hamada H. Maternal epigenetic factors in embryonic and postnatal development. Genes Cells. 2023;28(6):422-432. doi: 10.1111/gtc.13024
  33. Saenz-de-Juano MD, Ivanova E, Billooye K, Herta AC, Smitz J, Kelsey G, Anckaert E. Genome-wide assessment of DNA methylation in mouse oocytes reveals effects associated with in vitro growth, superovulation, and sexual maturity. Clin Epigenetics. 2019;11(1):197. doi: 10.1186/s13148-019-0794-y
  34. Qin L, Luo X-Q, Wei J-X, Wei Y-X, Wang J-L, Zhang L-L, Huang H-B, Wei X-C. Genome-wide DNA methylation analysis of oligospermia and asthenozoospermia in a Chinese population. Int J Clin Exp Med. 2019;12(4):3168-3184.
  35. Pacheco SE, Houseman EA, Christensen BC, Marsit CJ, Kelsey KT, Sigman M, Boekelheide K. Integrative DNA methylation and gene expression analyses identify DNA packaging and epigenetic regulatory genes associated with low motility sperm. PLoS One. 2011;6(6): e20280. doi: 10.1371/journal.pone.0020280
  36. Roberts AL, Gladish N, Gatev E, Jones MJ, Chen Y, MacIsaac JL, Tworoger SS, Austin SB, Tanrikut C, Chavarro JE, Baccarelli AA, Kobor MS. Exposure to childhood abuse is associated with human sperm DNA methylation. Transl Psychiatry. 2018;8(1):194. doi: 10.1038/s41398-018-0252-1
  37. Murphy SK, Itchon-Ramos N, Visco Z, Huang Z, Grenier C, Schrott R, Acharya K, Boudreau MH, Price TM, Raburn DJ, Corcoran DL, Lucas JE, Mitchell JT, McClernon FJ, Cauley M, Hall BJ, Levin ED, Kollins SH. Cannabinoid exposure and altered DNA methylation in rat and human sperm. Epigenetics. 2018;13(12):1208- 1221. doi: 10.1080/15592294.2018.1554521
  38. Stimpfel M, Vrtacnik-Bokal E. Minor DNA methylation changes are observed in spermatozoa prepared using different protocols. Andrology. 2020; 8(5): 1312-1323. doi: 10.1111/andr.12832
  39. Gulino GM, Bruno F, Sturiale V, Brancato D, Ragusa D, Tosi S, Saccone S, Federico C. From FISH to Hi-C: The Chromatin Architecture of the Chromosomal Region 7q36.3, Frequently Rearranged in Leukemic Cells, Is Evolutionary Conserved. Int J Mol Sci. 2021;22(5). doi: 10.3390/ijms22052338
  40. Lan MS, Wasserfall C, Maclaren NK, Notkins AL. IA-2, a transmembrane protein of the protein tyrosine phosphatase family, is a major autoantigen in insulin-dependent diabetes mellitus. Proc Natl Acad Sci U S A. 1996;93(13):6367-70. doi: 10.1073/pnas.93.13.6367
  41. Lu J, Li Q, Xie H, Chen ZJ, Borovitskaya AE, Maclaren NK, Notkins AL, Lan MS. Identification of a second transmembrane protein tyrosine phosphatase, IA-2beta, as an autoantigen in insulin-dependent diabetes mellitus: precursor of the 37-kDa tryptic fragment. Proc Natl Acad Sci U S A. 1996;93(6):2307-11. doi: 10.1073/pnas.93.6.2307
  42. Wasmeier C, Hutton JC. Molecular cloning of phogrin, a protein-tyrosine phosphatase homologue localized to insulin secretory granule membranes. J Biol Chem. 1996;271(30):18161-70. doi: 10.1074/jbc.271.30.18161
  43. Dragic D, Ennour-Idrissi K, Michaud A, Chang SL, Durocher F, Diorio C. Association Between BMI and DNA Methylation in Blood or Normal Adult Breast Tissue: A Systematic Review. Anticancer Res. 2020;40(4):1797-1808. doi: 10.21873/anticanres.14134
  44. Ouni M, Saussenthaler S, Eichelmann F, Jahnert M, Stadion M, Wittenbecher C, Ronn T, Zellner L, Gottmann P, Ling C, Schulze MB, Schurmann A. Epigenetic Changes in Islets of Langerhans Preceding the Onset of Diabetes. Diabetes. 2020;69(11):2503-2517. doi: 10.2337/db20-0204
  45. Weng X, Liu F, Zhang H, Kan M, Wang T, Dong M, Liu Y. Genome-wide DNA methylation profiling in infants born to gestational diabetes mellitus. Diabetes Res Clin Pract. 2018;142:10-18. doi: 10.1016/j.diabres.2018.03.016
  46. Awamleh Z, Butcher DT, Hanley A, Retnakaran R, Haertle L, Haaf T, Hamilton J, Weksberg R. Exposure to Gestational Diabetes Mellitus (GDM) alters DNA methylation in placenta and fetal cord blood. Diabetes Res Clin Pract. 2021; 174: 108690. doi: 10.1016/j.diabres.2021.108690
  47. Yang IV, Zhang W, Davidson EJ, Fingerlin TE, Kechris K, Dabelea D. Epigenetic marks of in utero exposure to gestational diabetes and childhood adiposity outcomes: the EPOCH study. Diabet Med. 2018;35(5):612-620. doi: 10.1111/dme.13604
  48. Wang W, Yao W, Tan Q, Li S, Duan H, Tian X, Xu C, Zhang D. Identification of key DNA methylation changes on fasting plasma glucose: a genome-wide DNA methylation analysis in Chinese monozygotic twins. Diabetol Metab Syndr. 2023;15(1):159. doi: 10.1186/s13098-023-01136-4
  49. Li S, Wang W, Zhang D, Li W, Lund J, Kruse T, Mengel-From J, Christensen K, Tan Q. Differential regulation of the DNA methylome in adults born during the Great Chinese Famine in 1959-1961. Genomics. 2021;113(6):3907-3918. doi: 10.1016/j.ygeno.2021.09.018
  50. Lee S. The association of genetically controlled CpG methylation (cg158269415) of protein tyrosine phosphatase, receptor type N2 (PTPRN2) with childhood obesity. Sci Rep. 2019;9(1):4855. doi: 10.1038/s41598-019-40486-w
  51. Ronn T, Perfilyev A, Jonsson J, Eriksson KF, Jorgensen SW, Brons C, Gillberg L, Vaag A, Stener-Victorin E, Ling C. Circulating triglycerides are associated with human adipose tissue DNA methylation of genes linked to metabolic disease. Hum Mol Genet. 2023;32(11):1875-1887. doi: 10.1093/hmg/ddad024
  52. Melton PE, Burton MA, Lillycrop KA, Godfrey KM, Rauschert S, Anderson D, Burdge GC, Mori TA, Beilin LJ, Ayonrinde OT, Craig JM, Olynyk JK, Holbrook JD, Pennell CE, Oddy WH, Moses EK, Adams LA, Huang RC. Differential DNA methylation of steatosis and non-alcoholic fatty liver disease in adolescence. Hepatol Int. 2023;17(3):584-594. doi: 10.1007/s12072-022-10469-7
  53. Yan Q, Forno E, Cardenas A, Qi C, Han YY, Acosta-Perez E, Kim S, Zhang R, Boutaoui N, Canino G, Vonk JM, Xu CJ, Chen W, Marsland A, Oken E, Gold DR, Koppelman GH, Celedon JC. Exposure to violence, chronic stress, nasal DNA methylation, and atopic asthma in children. Pediatr Pulmonol. 2021;56(7):1896-1905. doi: 10.1002/ ppul.25372
  54. Krishna RG, Vishnu Bhat B, Bobby Z, Papa D, Badhe B, Kalidoss VK, Karli S. Identification of differentially methylated candidate genes and their biological significance in IUGR neonates by methylation EPIC array. J Matern Fetal Neonatal Med. 2022; 35(3): 525-533. doi: 10.1080/14767058.2020.1727881
  55. Williams L, Seki Y, Delahaye F, Cheng A, Fuloria M, Hughes Einstein F, Charron MJ. DNA hypermethylation of CD3(+) T cells from cord blood of infants exposed to intrauterine growth restriction. Diabetologia. 2016;59(8):1714-23. doi: 10.1007/s00125-016-3983-7
  56. Garcia E, Wiemels J, Marconett C, Corona K, Howe C, Foley H, Lerner D, Lurvey N, Farzan S, Bastain T, Breton C, Mohazzab- Hosseinian S. Effect of Parental Adverse Childhood Experiences on Intergenerational DNA Methylation Signatures. Res Sq. 2023. doi: 10.21203/rs.3.rs-2977515/v1
  57. Sarkar S, Sujit KM, Singh V, Pandey R, Trivedi S, Singh K, Gupta G, Rajender S. Array-based DNA methylation profiling reveals peripheral blood differential methylation in male infertility. Fertil Steril. 2019;112(1):61-72 e1. doi: 10.1016/j.fertnstert.2019.03.020
  58. Agha G, Mendelson MM, Ward-Caviness CK, Joehanes R, Huan T, Gondalia R, Salfati E, Brody JA, Fiorito G, Bressler J, Chen BH, Ligthart S, Guarrera S, Colicino E, Just AC, Wahl S, Gieger C, Vandiver AR, Tanaka T, Hernandez DG, Pilling LC, Singleton AB, Sacerdote C, Krogh V, Panico S, Tumino R, Li Y, Zhang G, Stewart JD, Floyd JS, Wiggins KL, Rotter JI, Multhaup M, Bakulski K, Horvath S, Tsao PS, Absher DM, Vokonas P, Hirschhorn J, Fallin MD, Liu C, Bandinelli S, Boerwinkle E, Dehghan A, Schwartz JD, Psaty BM, Feinberg AP, Hou L, Ferrucci L, Sotoodehnia N, Matullo G, Peters A, Fornage M, Assimes TL, Whitsel EA, Levy D, Baccarelli AA. Blood Leukocyte DNA Methylation Predicts Risk of Future Myocardial Infarction and Coronary Heart Disease. Circulation. 2019;140(8):645- 657. doi: 10.1161/CIRCULATIONAHA.118.039357
  59. Krolevets M, Cate VT, Prochaska JH, Schulz A, Rapp S, Tenzer S, Andrade-Navarro MA, Horvath S, Niehrs C, Wild PS. DNA methylation and cardiovascular disease in humans: a systematic review and database of known CpG methylation sites. Clin Epigenetics. 2023;15(1):56. doi: 10.1186/s13148-023-01468-y
  60. van Andel MM, Groenink M, van den Berg MP, Timmermans J, Scholte A, Mulder BJM, Zwinderman AH, de Waard V. Genome-wide methylation patterns in Marfan syndrome. Clin Epigenetics. 2021;13(1):217. doi: 10.1186/s13148-021-01204-4
  61. Chuang YH, Lu AT, Paul KC, Folle AD, Bronstein JM, Bordelon Y, Horvath S, Ritz B. Longitudinal Epigenome-Wide Methylation Study of Cognitive Decline and Motor Progression in Parkinson’s Disease. J Parkinsons Dis. 2019;9(2):389-400. doi: 10.3233/JPD-181549
  62. Grunblatt E, Mandel S, Jacob-Hirsch J, Zeligson S, Amariglo N, Rechavi G, Li J, Ravid R, Roggendorf W, Riederer P, Youdim MB. Gene expression profiling of parkinsonian substantia nigra pars compacta; alterations in ubiquitin-proteasome, heat shock protein, iron and oxidative stress regulated proteins, cell adhesion/cellular matrix and vesicle trafficking genes. J Neural Transm (Vienna). 2004;111(12):1543-73. doi: 10.1007/s00702-004-0212-1
  63. Sandor C, Robertson P, Lang C, Heger A, Booth H, Vowles J, Witty L, Bowden R, Hu M, Cowley SA, Wade-Martins R, Webber C. Transcriptomic profiling of purified patient-derived dopamine neurons identifies convergent perturbations and therapeutics for Parkinson’s disease. Hum Mol Genet. 2017;26(3):552-566. doi: 10.1093/hmg/ddw412
  64. Kochmanski J, Kuhn NC, Bernstein AI. Parkinson’s disease-associated, sex-specific changes in DNA methylation at PARK7 (DJ-1), SLC17A6 (VGLUT2), PTPRN2 (IA-2beta), and NR4A2 (NURR1) in cortical neurons. NPJ Parkinsons Dis. 2022;8(1):120. doi: 10.1038/s41531-022-00355-2
  65. Wang W, Li W, Wu Y, Tian X, Duan H, Li S, Tan Q, Zhang D. Genome-wide DNA methylation and gene expression analyses in monozygotic twins identify potential biomarkers of depression. Transl Psychiatry. 2021;11(1):416. doi: 10.1038/s41398-021-01536-y
  66. Liang F, Lv K, Wang Y, Yuan Y, Lu L, Feng Q, Jing X, Wang H, Liu C, Rayner S, Ling S, Chen H, Wan Y, Zhou W, He L, Wu B, Qu L, Chen S, Xiong J, Li Y. Personalized Epigenome Remodeling Under Biochemical and Psychological Changes During Long-Term Isolation Environment. Front Physiol. 2019;10:932. doi: 10.3389/fphys.2019.00932
  67. den Dekker HT, Burrows K, Felix JF, Salas LA, Nedeljkovic I, Yao J, Rifas-Shiman SL, Ruiz-Arenas C, Amin N, Bustamante M, DeMeo DL, Henderson AJ, Howe CG, Hivert MF, Ikram MA, de Jongste JC, Lahousse L, Mandaviya PR, van Meurs JB, Pinart M, Sharp GC, Stolk L, Uitterlinden AG, Anto JM, Litonjua AA, Breton CV, Brusselle GG, Sunyer J, Smith GD, Relton CL, Jaddoe VWV, Duijts L. Newborn DNA-methylation, childhood lung function, and the risks of asthma and COPD across the life course. Eur Respir J. 2019;53(4). doi: 10.1183/13993003.01795-2018
  68. Chen YC, Tsai YH, Wang CC, Liu SF, Chen TW, Fang WF, Lee CP, Hsu PY, Chao TY, Wu CC, Wei YF, Chang HC, Tsen CC Chang YP, Lin MC. Epigenome-wide association study on asthma and chronic obstructive pulmonary disease overlap reveals aberrant DNA methylations related to clinical phenotypes. Sci Rep. 2021;11(1):5022. doi: 10.1038/s41598-021-83185-1
  69. Izquierdo AG, Boughanem H, Diaz-Lagares A, Arranz-Salas I, Esteller M, Tinahones FJ, Casanueva FF, Macias-Gonzalez M, Crujeiras AB. DNA methylome in visceral adipose tissue can discriminate patients with and without colorectal cancer. Epigenetics. 2022;17(6):665-676. doi: 10.1080/15592294.2021.1950991

Supplementary files

Supplementary Files
Action
1. Fig. 1. The methylation profile of CpG sites in the analyzed region (indicated by red vertical stripes in the diagram) of the PTPRN2 gene in the groups of spontaneous abortions with trisomy 16 (SA Tri16), with monosomy X (SA MonoX) and with normal karyotype (SA NK) compared with the group of induced abortions (IA). Dotted lines show standard deviation of the methylation profile;* — p < 0.05

Download (140KB)
2. Fig. 2. The methylation profile of CpG sites in the analyzed region (indicated by red vertical stripes in the diagram) of the PRDM16 gene in the groups of spontaneous abortions with trisomy 16 (SA Tri16), with monosomy X (SA MonoX) and with normal karyotype (SA NK) compared with the group of induced abortions (IA). Dotted lines show standard deviation of the methylation profile;* — p < 0.05

Download (199KB)
3. Fig. 3. The average level of methylation of the analyzed CpG sites of the PTPRN2 and PRDM16 genes in chorionic villi in groups of spontaneous abortions with trisomy 16, with monosomy X, with normal karyotype compared with induced abortions and peripheral blood lymphocytes of adult individuals

Download (75KB)
4. Fig. 4. Dependence of the average methylation level of the analyzed CpG sites of the PTPRN2 and PRDM16 genes in chorionic villi in the group of spontaneous abortions with normal karyotype on the average methylation level of the retrotransposon LINE‑1

Download (79KB)
5. Fig. 5. Dependence of the average methylation level of the analyzed CpG sites of the PTPRN2 and PRDM16 genes in chorionic villi in the group of spontaneous abortions with monosomy X on the maternal age

Download (79KB)

Copyright (c) 2023 Vasilyev S.A., Vasilyeva O.Y., Oppong-Peprah B., Demeneva V.V., Zuev A.S., Sazhenova E.A., Nikitina T.V., Tolmacheva E.N.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies