Polycystic ovary syndrome and obesity: a modern paradigm

Cover Page

Cite item

Abstract

Polycystic ovary syndrome is a heterogeneous endocrine disease that affects women of childbearing age. The pathogenesis of polycystic ovary syndrome has not been fully studied to date, its paradigm considers the genetic determinism of the manifestation of hormonal and metabolic disorders, which are considered to be criteria for the verification of the disease (hyperandrogenism, oligo/anovulation and/or polycystic ovarian transformation during ultrasound examination (ultrasound). This review discusses the main ways of interaction between hyperandrogenism, insulin resistance and obesity and their role in the pathogenesis of polycystic ovary syndrome, as well as possible methods of treatment for this category of patients. The review analyzes the role of hyperandrogenism and insulin resistance in the implementation of the genetic scenario of polycystic ovary syndrome and finds out the reasons why women with polycystic ovary syndrome often demonstrate the presence of a «metabolic trio» - hyperinsulinemia, insulin resistance and type 2 diabetes mellitus. It is noted that obesity is not included in the criteria for the diagnosis of polycystic ovary syndrome, but epidemiological data confirm the existence of a relationship between these diseases. Obesity, especially visceral, which is often found in women with polycystic ovary syndrome, enhances and worsens metabolic and reproductive outcomes with polycystic ovary syndrome, as well as increases insulin resistance and compensatory hyperinsulinemia, which, in turn, stimulates adipogenesis and suppresses lipolysis. Obesity increases the sensitivity of tech cells to luteinizing hormone stimulation and enhances functional hyperandrogenism of the ovaries, increasing the production of androgens by the ovaries. Excess body weight is associated with a large number of inflammatory adipokines, which, in turn, contribute to the growth of insulin resistance and adipogenesis. Obesity and insulin resistance exacerbate the symptoms of hyperandrogenism, forming a vicious circle that contributes to the development of polycystic ovary syndrome. These data allow us to conclude that bariatric surgery can become an alternative to drugs (metformin, thiazolidinedione analogs of glucagon-like peptide-1), which has shown positive results in the treatment of patients with polycystic ovary syndrome and obesity.

About the authors

Marina B. Khamoshina

Рeoples’ Friendship University of Russia

Email: iu.pavlova@yandex.ru
ORCID iD: 0000-0003-1940-4534
Moscow, Russian Federation

Yulia S. Artemenko

Рeoples’ Friendship University of Russia

Author for correspondence.
Email: iu.pavlova@yandex.ru
ORCID iD: 0000-0003-2116-1420
Moscow, Russian Federation

Ayshan A. Bayramova

Рeoples’ Friendship University of Russia

Email: iu.pavlova@yandex.ru
ORCID iD: 0000-0001-6391-940X
Moscow, Russian Federation

Valentina A. Ryabova

Research Institute of General Pathology and Pathophysiology

Email: iu.pavlova@yandex.ru
ORCID iD: 0000-0003-4292-6728
Moscow, Russian Federation

Mekan R. Orazov

Рeoples’ Friendship University of Russia

Email: iu.pavlova@yandex.ru
ORCID iD: 0000-0002-1767-5536
Moscow, Russian Federation

References

  1. Teede HJ, Misso ML, Costello MF, Dokras A, Laven J, Moran L., et al. Recommendations from the international evidencebased guideline for the assessment and management of polycystic ovary syndrome. Hum Reprod. 2018;33(9):1602-1618. doi: 10.1093/humrep/dey256
  2. Polycystic ovary syndrome. Clinical recommendations. Ministry of Health of the Russian Federation. 2021. https://cr.minzdrav.gov.rurecomend/258 (In Russian).
  3. Lim JJ, Lima PDA, Salehi R, Lee DR, Tsang BK. Regulation of androgen receptor signaling by ubiquitination during folliculogenesis and its possible dysregulation in polycystic ovarian syndrome. Sci Rep. 2017;7(1):10272. doi: 10.1038/s41598-017-09880-0
  4. Bertoldo MJ, Caldwell ASL, Riepsamen AH, Lin D, Gonzalez MB, Robker RL. A Hyperandrogenic Environment Causes Intrinsic Defects That Are Detrimental to Follicular Dynamics in a PCOS Mouse Model. Endocrinology. 2019;160(3):699-715. doi: 10.1210/en.2018-00966
  5. World Health Organization: Obesity and overweight fact sheet. Available from: http://www.who.int/mediacentre/factsheets/fs311/en/
  6. Guh DP, Zhang W, Bansback N, Amarsi Z, Birmingham CL, Anis AH. The incidence of co-morbidities related to obesity and overweight: a systematic review and meta-analysis. BMC Public Health. 2009;9:88. doi: 10.1186/1471-2458-9-88
  7. Barber TM, Hanson P, Weickert MO, Franks S. Obesity and Polycystic Ovary Syndrome: Implications for Pathogenesis and Novel Management Strategies. Clin Med Insights Reprod Health. 2019;13:1179558119874042. doi: 10.1177/1179558119874042
  8. Wikiera B, Zubkiewicz-Kucharska A, Nocoń-Bohusz J, Noczyńska A. Metabolic disorders in polycystic ovary syndrome. Pediatr Endocrinol Diabetes Metab. 2017;23(4):204-208. doi: 10.18544/PEDM-23.04.0094
  9. Glueck CJ, Goldenberg N. Characteristics of obesity in polycystic ovary syndrome: Etiology, treatment, and genetics. Metabolism. 2019;92:108-120. doi: 10.1016/j.metabol.2018.11.002.
  10. Yildiz BO. Polycystic ovary syndrome: is obesity a symptom? Womens Health (Lond). 2013;9(6):505-507. doi: 10.2217/whe.13.53
  11. Lim SS, Davies MJ, Norman RJ, Moran LJ. Overweight, obesity and central obesity in women with polycystic ovary syndrome: a systematic review and meta-analysis. Hum Reprod Update. 2012;18(6):618-637. doi: 10.1093/humupd/dms030
  12. Ollila MM, Piltonen T, Puukka K, Ruokonen A, Järvelin MR, Tapanainen JS. Weight Gain and Dyslipidemia in Early Adulthood Associate With Polycystic Ovary Syndrome: Prospective Cohort Study. J Clin Endocrinol Metab. 2016;101(2):739-747. doi:10.1210/ jc.2015-3543
  13. Koivuaho E, Laru J, Ojaniemi M, Puukka K, Kettunen J, Tapanainen JS. Age at adiposity rebound in childhood is associated with PCOS diagnosis and obesity in adulthood-longitudinal analysis of BMI data from birth to age 46 in cases of PCOS. Int J Obes (Lond). 2019;43(7):1370-1379. doi: 10.1038/s41366-019-0318-z
  14. Lim JJ, Han CY, Lee DR, Tsang BK. Ring Finger Protein 6 Mediates Androgen-Induced Granulosa Cell Proliferation and Follicle Growth via Modulation of Androgen Receptor Signaling. Endocrinology. 2017;158(4):993-1004. doi: 10.1210/en.2016-1866
  15. Nanba AT, Rege J, Ren J, Auchus RJ, Rainey WE, Turcu AF. 11-Oxygenated C 19 Steroids Do Not Decline With Age in Women. J Clin Endocrinol Metab. 2019;104(7):2615-2622. doi: 10.1210/jc.2018-02527
  16. Li H, Chen Y, Yan LY, Qiao J. Increased expression of P450scc and CYP17 in development of endogenous hyperandrogenism in a rat model of PCOS. Endocrine. 2013;43(1):184-190. doi: 10.1007/s12020-012-9739-3
  17. Bakhshalizadeh S, Amidi F, Shirazi R, Shabani Nashtaei M. Vitamin D 3 regulates steroidogenesis in granulosa cells through AMP-activated protein kinase (AMPK) activation in a mouse model of polycystic ovary syndrome. Cell Biochem Funct. 2018;36(4):183-193. doi: 10.1002/cbf.3330
  18. Gonzalez E, Guengerich FP. Kinetic processivity of the two-step oxidations of progesterone and pregnenolone to androgens by human cytochrome P450 17A1. J Biol Chem. 2017;292(32):13168-13185. doi: 10.1074/jbc.M117.794917
  19. Kakuta H, Iguchi T, Sato T. The Involvement of Granulosa Cells in the Regulation by Gonadotropins of Cyp17a1 in Theca Cells. In Vivo. 2018;32(6):1387-1401. doi: 10.21873/invivo.11391
  20. Xu JN, Zeng C, Zhou Y, Peng C, Zhou YF, Xue Q. Metformin inhibits StAR expression in human endometriotic stromal cells via AMPK-mediated disruption of CREB-CRTC 2 complex formation. J Clin Endocrinol Metab. 2014;99(8):2795-2803. doi:10.1210/ jc.2014-1593
  21. Martinat N, Crépieux P, Reiter E, Guillou F. Extracellular signalregulated kinases (ERK) 1, 2 are required for luteinizing hormone (LH)-induced steroidogenesis in primary Leydig cells and control steroidogenic acute regulatory (StAR) expression. Reprod Nutr Dev. 2005;45(1):101-108. doi: 10.1051/rnd:2005007
  22. Chow LS, Mashek DG, Wang Q, Shepherd SO, Goodpaster BH, Dubé JJ. Effect of acute physiological free fatty acid elevation in the context of hyperinsulinemia on fiber type-specific IMCL accumulation. J Appl Physiol. 2017;123(1):71-78. doi:10.1152/ japplphysiol.00209.2017
  23. Hattori K, Orisaka M, Fukuda S, Tajima K, Yamazaki Y, Mizutani T., et al. Luteinizing Hormone Facilitates Antral Follicular Maturation and Survival via Thecal Paracrine Signaling in Cattle. Endocrinology. 2018;159(6):2337-2347. doi: 10.1210/en.2018-00123
  24. Radzinsky V.E., Khamoshina M.B., Raevskaya O.A. Essays on endocrine gynecology. Radzinsky V.E., editor. M.: Editorial Office of the journal StatusPraesens; 2020. 576 p. (In Russian)
  25. Yang F, Ruan YC, Yang YJ, Wang K, Liang SS, Han Y. Follicular hyperandrogenism downregulates aromatase in luteinized granulosa cells in polycystic ovary syndrome women. Reproduction. 2015;150(4):289-296. doi: 10.1530/REP-15-0044
  26. Li A, Zhang L, Jiang J, Yang N, Liu Y, Cai L. Cui Y, Diao F, Han X, Liu J, Sun Y. Follicular hyperandrogenism and insulin resistance in polycystic ovary syndrome patients with normal circulating testosterone levels. J Biomed Res. 2017;32(3):208-214. doi: 10.7555/JBR.32.20170136
  27. Torre-Villalvazo I, Bunt AE, Alemán G, Marquez-Mota CC, Diaz-Villaseñor A, Noriega LG., Estrada I, Figueroa-Juárez E, TovarPalacio C, Rodriguez-López LA, López-Romero P, Torres N, Tovar AR. Adiponectin synthesis and secretion by subcutaneous adipose tissue is impaired during obesity by endoplasmic reticulum stress. J Cell Biochem. 2018;119(7):5970-5984. doi: 10.1002/jcb.26794
  28. Malini NA, Roy George K. Evaluation of different ranges of LH: FSH ratios in polycystic ovarian syndrome (PCOS) - Clinical based case control study. Gen Comp Endocrinol. 2018;260:51-57. doi: 10.1016/j.ygcen.2017.12.007
  29. Munir I, Yen HW, Geller DH, Torbati D, Bierden RM, Weitsman SR, Agarwal SK, Magoffin DA. Insulin augmentation of 17alpha-hydroxylase activity is mediated by phosphatidyl inositol 3-kinase but not extracellular signal-regulated kinase-1/2 in human ovarian theca cells. Endocrinology. 2004;145(1):175-183. doi: 10.1210/en.2003-0329
  30. Zhang Y, Sun X, Sun X, Meng F, Hu M, Li X., Li W, Wu XK, Brännström M, Shao R, Billig H. Molecular characterization of insulin resistance and glycolytic metabolism in the rat uterus. Sci Rep. 2016;6:30679. doi: 10.1038/srep30679
  31. Arkun Y, Yasemi M. Dynamics and control of the ERK signaling pathway: Sensitivity, bistability, and oscillations. PLoS One. 2018;13(4): e0195513. doi: 10.1371/journal.pone.0195513
  32. Cadagan D, Khan R, Amer S. Thecal cell sensitivity to luteinizing hormone and insulin in polycystic ovarian syndrome. Reprod Biol. 2016;16(1):53-60. doi: 10.1016/j.repbio.2015.12.006.
  33. Zhang G, Garmey JC, Veldhuis JD. Interactive stimulation by luteinizing hormone and insulin of the steroidogenic acute regulatory (StAR) protein and 17alpha-hydroxylase/17,20-lyase (CYP17) genes in porcine theca cells. Endocrinology. 2000;141(8):2735-2742
  34. Barber TM, McCarthy MI, Wass JA, Franks S. Obesity and polycystic ovary syndrome. Clin Endocrinol (Oxf). 2006;65(2):137-145.
  35. Bednarska S, Siejka A. The pathogenesis and treatment of polycystic ovary syndrome: what’s new? Advances in Clinical and Experimental Medicine. 2017;26(2):359-367. doi:10.17219/ acem/59380
  36. Muntoni S, Muntoni S. Insulin resistance: pathophysiology and rationale for treatment. Ann Nutr Metab. 2011;58(1):25-36.
  37. Moran LJ, Norman RJ, Teede HJ. Metabolic risk in PCOS: phenotype and adiposity impact. Trends Endocrinol Metab. 2015;26(3):136-143. doi: 10.1016/j.tem.2014.12.003
  38. Lazúrová I, Lazúrová Z, Figurová J, Ujházi S, Dravecká I, D’Alessandro B. Relationship between steroid hormones and metabolic profile in women with polycystic ovary syndrome. Physiol Res. 2019;68(3):457-465. doi: 10.33549/physiolres.934062
  39. Delitala AP, Capobianco G, Delitala G, Cherchi PL, Dessole S. Polycystic ovary syndrome, adipose tissue and metabolic syndrome. Arch Gynecol Obstet. 2017;296(3):405-419. doi:10.1007/ s00404-017-4429-2
  40. Tchernof A, Brochu D, Maltais-Payette I, Mansour MF, Marchand GB, Carreau AM, Kapeluto J. Androgens and the Regulation of Adiposity and Body Fat Distribution in Humans. Compr Physiol. 2018;8(4):1253-1290. doi: 10.1002/cphy.c170009
  41. Durmus U, Duran C, Ecirli S. Visceral adiposity index levels in overweight and/or obese, and non-obese patients with polycystic ovary syndrome and its relationship with metabolic and inflammatory parameters. J Endocrinol Invest. 2017;40:487-97. doi: 10.1007/s40618-016-0582-x
  42. Rosenfield RL, Ehrmann DA. The Pathogenesis of Polycystic Ovary Syndrome (PCOS): The Hypothesis of PCOS as Functional Ovarian Hyperandrogenism Revisited. Endocr Rev. 2016;37:467-520. doi: 10.1210/er.2015-1104
  43. Nohara K, Laque A, Allard C, Munzberg H, Mauvais-Jarvis F. Central mechanisms of adiposity in adult female mice with androgen excess. Obesity (Silver Spring). 2014;22(6):1477-1484. doi:10.1002/ oby.20719
  44. Kwon H, Kim D, Kim JS. Body Fat Distribution and the Risk of Incident Metabolic Syndrome: A Longitudinal Cohort Study. Sci Rep. 2017;7(1):10955. doi: 10.1038/s41598-017-09723-y
  45. Divoux A, Erdos E, Whytock K, Osborne TF, Smith SR. Transcriptional and DNA Methylation Signatures of Subcutaneous Adipose Tissue and Adipose-Derived Stem Cells in PCOS Women. Cells. 2022;11(5):848. doi: 10.3390/cells11050848
  46. Dimitriadis GK, Kyrou I, Randeva HS. Polycystic ovary syndrome as a proinflammatory state: the role of adipokines. Current Pharmaceutical Design. 2016;22(36):5535-5546. doi: 10.2174/138 1612822666160726103133
  47. Echiburú B, Pérez-Bravo F, Galgani JE, Sandoval D, Saldías C, Crisosto N, Maliqueo M, Sir-Petermann T. Enlarged adipocytes in subcutaneous adipose tissue associated to hyperandrogenism and visceral adipose tissue volume in women with polycystic ovary syndrome. Steroids. 2018;130:15-21. doi: 10.1016/j.steroids.2017.12.009
  48. Escobar-Morreale HF, Luque-Ramirez M, Gonzalez F. Circulating inflammatory markers in polycystic ovary syndrome: a systematic review and metaanalysis. Fertility and Sterility. 2011;95(3):1048-1058. e1041-1042. doi:10.1016/j. fertnstert.2010.11.036
  49. Wu Y, Lee MJ, Ido Y, Fried SK. High-fat diet-induced obesity regulates MMP3 to modulate depot- and sex-dependent adipose expansion in C 57BL/6J mice. Am.J. Physiol. Metab. 2017;312: E 58-E 71. doi: 10.1152/ajpendo.00128.2016
  50. Maquoi E, Munaut C, Colige A, Collen D, Lijnen HR. Modulation of Adipose Tissue Expression of Murine Matrix Metalloproteinases and Their Tissue Inhibitors With Obesity. Diabetes. 2002;51:1093-1101. doi: 10.2337/diabetes.51.4.1093
  51. Nohara K, Waraich RS, Liu S, Ferron M, Waget A, Meyers MS. Developmental androgen excess programs sympathetic tone and adipose tissue dysfunction and predisposes to a cardiometabolic syndrome in female mice. Am J Physiol Endocrinol Metab. 2013;304(12): E 1321- E 1330. doi: 10.1152/ajpendo.00620.2012
  52. Puttabyatappa M, Lu C, Martin JD, Chazenbalk G, Dumesic D, Padmanabhan V. Developmental programming: impact of prenatal testosterone excess on steroidal machinery and cell differentiation markers in visceral adipocytes of female sheep. Reproductive Sciences. 2018;25(7):1010-1023. doi: 10.1177/1933719117746767
  53. Chazenbalk G, Singh P, Irge D, Shah A, Abbott DH, Dumesic DA. Androgens inhibit adipogenesis during human adipose stem cell commitment to preadipocyte formation. Steroids. 2013;78(9):920-926. doi: 10.1016/j.steroids.2013.05.001
  54. Vishvanath L, Gupta RK. Contribution of adipogenesis to healthy adipose tissue expansion in obesity. J. Clin. Investig. 2019;129:4022-4031. doi: 10.1172/JCI129191
  55. O’Reilly MW, Kempegowda P, Walsh M, Taylor AE, Manolopoulos KN, Allwood JW et al. AKR 1C 3-Mediated Adipose Androgen Generation Drives Lipotoxicity in Women With Polycystic Ovary Syndrome. J Clin Endocrinol Metab. 2017;102(9):3327-3339. doi: 10.1210/jc.2017-00947
  56. Ouchi N, Parker JL, Lugus JJ, Walsh K. Adipokines in inflammation and metabolic disease. Nat Rev Immunol. 2011;11(2):85-97. doi: 10.1038/nri2921
  57. Ye R, Scherer PE. Adiponectin, driver or passenger on the road to insulin sensitivity? Mol Metab. 2013;2:133-141. doi:10.1016/j. molmet.2013.04.001
  58. van Houten EL, Kramer P, McLuskey A, Karels B, Themmen AP, Visser JA. Reproductive and metabolic phenotype of a mouse model of PCOS. Endocrinology. 2012;153(6):2861-2869. doi: 10.1210/en.2011-1754
  59. Benrick A, Chanclon B, Micallef P, Wu Y, Hadi L, Shelton JM. Adiponectin protects against development of metabolic disturbances in a PCOS mouse model. Proc Natl Acad Sci USA. 2017;114(34): E 7187-E 7196. doi: 10.1073/pnas.1708854114
  60. Ozgen IT, Oruclu S, Selek S, Kutlu E, Guzel G, Cesur Y. Omentin-1 level in adolescents with polycystic ovarian syndrome. Pediatrics International. 2019;61(2):147-151. doi: 10.1111/ped.13761
  61. Barber TM, Franks S. Adipocyte biology in polycystic ovary syndrome. Mol Cell Endocrinol. 2013;373(1-2):68-76. doi:10.1016/j. mce.2012.10.010
  62. Yildiz BO, Bozdag G, Otegen U, Harmanci A, Boynukalin K, Vural Z, Kirazli S, Yarali H. Visfatin and retinol-binding protein 4 concentrations in lean, glucose-tolerant women with PCOS. Reprod Biomed Online. 2010;20(1):150-155. doi: 10.1016/j.rbmo.2009.10.016
  63. Cekmez F, Cekmez Y, Pirgon O, Canpolat FE, Aydinöz S, Ipcioglu OM, Karademir F. Evaluation of new adipocytokines and insulin resistance in adolescents with polycystic ovary syndrome. Eur Cytokine Netw. 2011;22(1):32-37. doi: 10.1684/ecn.2011.0279
  64. Dikmen E, Tarkun I, Canturk Z, Cetinarslan B. Plasma visfatin level in women with polycystic ovary syndrome. Gynecol Endocrinol. 2010;27(7):475-479. doi: 10.3109/09513590.2010.495796
  65. Prizant H, Gleicher N, Sen A. Androgen actions in the ovary: balance is key. J Endocrinol. 2014;222(3): R 141-R 151. doi:10.1530/ JOE-14-0296
  66. Walters KA, Handelsman DJ. Role of androgens in the ovary. Mol Cell Endocrinol. 2018;465:36-47. doi: 10.1016/j.mce.2017.06.026
  67. Rodrigues JK, Navarro PA, Zelinski MB, Stouffer RL, Xu J. Direct actions of androgens on the survival, growth and secretion of steroids and anti-Müllerian hormone by individual macaque follicles during three-dimensional culture. Hum Reprod. 2015;30(3):664-674. doi: 10.1093/humrep/deu335
  68. Pierre A, Taieb J, Giton F, Grynberg M, Touleimat S, Hachem HE, Fanchin R, Monniaux D, Cohen-Tannoudji J, di Clemente N, Racine C. Dysregulation of the Anti-Müllerian Hormone System by Steroids in Women With Polycystic Ovary Syndrome. J Clin Endocrinol Metab. 2017;102(11):3970-3978. doi: 10.1210/jc.2017-00308
  69. Stanek MB, Borman SM, Molskness TA, Larson JM, Stouffer RL, Patton PE. Insulin and insulin-like growth factor stimulation of vascular endothelial growth factor production by luteinized granulosa cells: comparison between polycystic ovarian syndrome (PCOS) and non-PCOS women. J Clin Endocrinol Metab. 2007;92(7):2726-2733. doi: 10.1210/jc.2006-2846
  70. Wang T, Liu Y, Lv M, Xing Q, Zhang Z, He X, Xu Y, Wei Z, Cao Y. miR-323-3p regulates the steroidogenesis and cell apoptosis in polycystic ovary syndrome (PCOS) by targeting IGF-1. Gene. 2019;683:87-100. doi: 10.1016/j.gene.2018.10.006
  71. Ng EH, Chan CC, Yeung WS, Ho PC. Comparison of ovarian stromal blood flow between fertile women with normal ovaries and infertile women with polycystic ovary syndrome. Hum Reprod. 2005;20(7):1881-1886. doi: 10.1093/humrep/deh853
  72. Goossens GH, Blaak EE. Adipose tissue dysfunction and impaired metabolic health in human obesity: a matter of oxygen? Front Endocrinol (Lausanne). 2015;6(55). https://doi.org/10.3389/fendo.2015.00055
  73. Gonzalez MB, Lane M, Knight EJ, Robker RL. Inflammatory markers in human follicular fluid correlate with lipid levels and Body Mass Index. J Reprod Immunol. 2018;130:25-29. doi: 10.1016/j.jri.2018.08.005
  74. Chabrolle C, Tosca L, Ramé C, Lecomte P, Royère D, Dupont J. Adiponectin increases insulin-like growth factor I-induced progesterone and estradiol secretion in human granulosa cells. Fertil Steril. 2009;92(6):1988-1996. doi: 10.1016/j.fertnstert.2008.09.008.
  75. Ledoux S, Campos DB, Lopes FL, Dobias-Goff M, Palin MF, Murphy BD. Adiponectin induces periovulatory changes in ovarian follicular cells. Endocrinology. 2006;147(11):5178-5186. doi:10.1210/ en.2006-0679
  76. Shorakae S, Abell SK, Hiam DS, Lambert EA, Eikelis N, Jona E, Sari CI, Stepto NK, Lambert GW, de Courten B, Teede HJ. High-molecular-weight adiponectin is inversely associated with sympathetic activity in polycystic ovary syndrome. Fertil Steril. 2018;109(3):532-539. doi: 10.1016/j.fertnstert.2017.11.020
  77. Cheng XB, Wen JP, Yang J, Yang Y, Ning G, Li XY. GnRH secretion is inhibited by adiponectin through activation of AMPactivated protein kinase and extracellular signal-regulated kinase. Endocrine. 2011;39(1):6-12. doi: 10.1007/s12020-010-9375-8
  78. Day FR, Hinds DA, Tung JY, Stolk L, Styrkarsdottir U, Saxena R, Bjonnes A, Broer L, Dunger DB, Halldorsson BV, Lawlor DA, Laval G, Mathieson I, McCardle WL, Louwers Y, Meun C, Ring S, Scott RA, Sulem P, Uitterlinden AG, Wareham NJ, Thorsteinsdottir U, Welt C, Stefansson K, Laven JSE, Ong KK, Perry JRB. Causal mechanisms and balancing selection inferred from genetic associations with polycystic ovary syndrome. Nat Commun. 2015;6:8464. doi: 10.1038/ncomms9464
  79. Batarfi AA, Filimban N, Bajouh OS, Dallol A, Chaudhary AG, Bakhashab S. MC 4R variants rs12970134 and rs17782313 are associated with obese polycystic ovary syndrome patients in the Western region of Saudi Arabia. BMC Med Genet. 2019;20(1):144. doi: 10.1186/s12881-019-0876-x
  80. Xu L, Shi Y, Gu J, Wang Y, Wang L, You L, Qi X, Ye Y, Chen Z. Association between ghrelin gene variations, body mass index, and waist-to-hip ratio in patients with polycystic ovary syndrome. Exp Clin Endocrinol Diabetes. 2014;122(3):144-148. doi: 10.1055/s-0034-1367024
  81. Liu Q, Zhu Z, Kraft P, Deng Q, Stener-Victorin E, Jiang X. Genomic correlation, shared loci, and causal relationship between obesity and polycystic ovary syndrome: a large-scale genomewide cross-trait analysis. BMC Med. 2022;20(1):66. doi: 10.1186/s12916-022-02238-y
  82. Lim SS, Hutchison SK, Van Ryswyk E, Norman RJ, Teede HJ, Moran LJ. Lifestyle changes in women with polycystic ovary syndrome. Cochrane Database Syst Rev. 2019;3(3): CD 007506. doi: 10.1002/14651858.CD 007506.pub4
  83. Nybacka Å, Carlström K, Ståhle A, Nyrén S, Hellström PM, Hirschberg AL. Randomized comparison of the influence of dietary management and/or physical exercise on ovarian function and metabolic parameters in overweight women with polycystic ovary syndrome. Fertil Steril. 2011;96(6):1508-1513. doi: 10.1016/j.fertnstert.2011.09.006
  84. Kim CH, Lee SH. Effectiveness of Lifestyle Modification in Polycystic Ovary Syndrome Patients with Obesity: A Systematic Review and Meta-Analysis. Life (Basel). 2022;12(2):308. doi:10.3390/ life12020308
  85. Nathan N, Sullivan SD. The utility of metformin therapy in reproductive-aged women with polycystic ovary syndrome (PCOS). Curr Pharm Biotechnol. 2014;15(1):70-83. doi: 10.2174/13892010 15666140330195142
  86. Kim CH, Chon SJ, Lee SH. Effects of lifestyle modification in polycystic ovary syndrome compared to metformin only or metformin addition: A systematic review and meta-analysis. Sci Rep. 2020;10(1):7802. doi: 10.1038/s41598-020-64776-w
  87. Lebovitz HE. Thiazolidinediones: the Forgotten Diabetes Medications. Curr Diab Rep. 2019;19(12):151. doi: 10.1007/s11892- 019-1270-y
  88. Macut D, Bjekić-Macut J, Rahelić D, Doknić M. Insulin and the polycystic ovary syndrome. Diabetes Res Clin Pract. 2017;130:163 doi: 10.1016/j.diabres.2017.06.011
  89. Du Q, Yang S, Wang YJ, Wu B, Zhao YY, Fan B. Effects of thiazolidinediones on polycystic ovary syndrome: a meta-analysis of randomized placebo-controlled trials. Adv Ther. 2012;29(9):763-774. doi: 10.1007/s12325-012-0044-6
  90. Tudurí E, López M, Diéguez C, Nadal A, Nogueiras R. Glucagon-Like Peptide 1 Analogs and their Effects on Pancreatic Islets. Trends Endocrinol Metab. 2016;27(5):304-318. doi: 10.1016/j.tem.2016.03.004
  91. Lamos EM, Malek R, Davis SN. GLP-1 receptor agonists in the treatment of polycystic ovary syndrome. Expert Rev Clin Pharmacol. 2017;10(4):401-408. doi: 10.1080/17512433.2017.1292125
  92. Jensterle M, Kravos NA, Pfeifer M, Kocjan T, Janez AA. 12week treatment with the long-acting glucagon-like peptide 1 receptor agonist liraglutide leads to significant weight loss in a subset of obese women with newly diagnosed polycystic ovary syndrome. Hormones (Athens). 2015;14(1):81-90. doi: 10.1007/BF03401383
  93. Han Y, Li Y, He B. GLP-1 receptor agonists versus metformin in PCOS: a systematic review and meta-analysis. Reproductive BioMedicine Online. 2019;39(2):332-342. doi:10.1016/j. rbmo.2019.04.017
  94. Elkind-Hirsch K, Marrioneaux O, Bhushan M, Vernor D, Bhushan R. Comparison of single and combined treatment with exenatide and metformin on menstrual cyclicity in overweight women with polycystic ovary syndrome. Journal of Clinical Endocrinology & Metabolism. 2008;93(7):2670-2678. doi: 10.1210/jc.2008-0115
  95. Jensterle Sever M, Kocjan T, Pfeifer M, Kravos NA, Janez A. Short-term combined treatment with liraglutide and metformin leads to significant weight loss in obese women with polycystic ovary syndrome and previous poor response to metformin. European Journal of Endocrinology. 2014;170(3):451-459. doi: 10.1530/EJE-13-0797
  96. Li YJ, Han Y, He B. Effects of bariatric surgery on obese polycystic ovary syndrome: a systematic review and meta-analysis. Surgery for Obesity and Related Diseases. 2019;15(6):942-950. doi: 10.1016/j.soard.2019.03.032
  97. Christ JP, Falcone T. Bariatric Surgery Improves Hyperandrogenism, Menstrual Irregularities, and Metabolic Dysfunction Among Women with Polycystic Ovary Syndrome (PCOS). Obes Surg. 2018;28(8):2171-2177. doi: 10.1007/s11695-018-3155-6
  98. Singh D, Arumalla K, Aggarwal S, Singla V, Ganie A, Malhotra N. Impact of Bariatric Surgery on Clinical, Biochemical, and Hormonal Parameters in Women with Polycystic Ovary Syndrome (PCOS). Obes Surg. 2020;30(6):2294-2300. doi: 10.1007/s11695-020-04487-3
  99. Brandt SJ, Gotz A, Tschop MH, Muller TD. Gut hormone polyagonists for the treatment of type 2 diabetes. Peptides. 2018;100:190-201. doi: 10.1016/j.peptides.2017.12.021

Copyright (c) 2022 Khamoshina M.B., Artemenko Y.S., Bayramova A.A., Ryabova V.A., Orazov M.R.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies