Clinical and genetic aspects of menopausal hormone therapy - a modern paradigm. What changed COVID-19 pandemic?

Cover Page

Cite item

Abstract

In the modern paradigm of public health protection, much attention is paid to the health of women in peri- and postmenopause, and a personalized approach prevails. It is generally recognized that the pathogenetic therapy of menopausal disorders is hormone therapy. But the COVID-19 pandemic has made its own adjustments to the routine strategy of choosing menopausal hormone therapy (MHT). The purpose of this review was to analyze studies on the dependence of the effectiveness of MHT on clinical and genetic aspects in the context of the ongoing COVID-19 pandemic. The review highlights the main risks of MHT for thromboembolic diseases and coagulation complications characteristic of COVID-19, discusses genetic predispositions that aggravate the course of the post-COVID period, as well as the effectiveness of estrogens in protecting the vascular endothelium and increasing the number of CD4+ T cells, providing an adequate immune response when infected with SARS-CoV-2. Numerous studies show that the complications characteristic of the severe course of COVID-19 are multifactorial in nature and cannot be unambiguously explained only by genetic predisposition. However, with the development of personalized medicine, special attention should be paid to the study of genetic aspects that can equally contribute to the occurrence of menopausal disorders in healthy women and aggravate the course of the post-pregnancy period. The data presented allow us to conclude that in the context of the ongoing COVID-19 pandemic at the population level, MHT can bring significant benefits to women during menopause due to the beneficial effect of estrogens on vascular walls. Additional study of the relationship between the course of the postcovid period in MHT users and polymorphisms of candidate genes that determine the risks of thrombotic complications and metabolic consequences is required.

About the authors

Irina S. Zhuravleva

Peoples’ Friendship University of Russia

Author for correspondence.
Email: izhuravas@mail.ru
ORCID iD: 0000-0001-9425-8616
Moscow, Russian Federation

Marina B. Khamoshina

Peoples’ Friendship University of Russia

Email: izhuravas@mail.ru
ORCID iD: 0000-0003-1940-4534
Moscow, Russian Federation

Mekan R. Orazov

Peoples’ Friendship University of Russia

Email: izhuravas@mail.ru
ORCID iD: 0000-0002-5342-8129
Moscow, Russian Federation

Elena M. Dmitrieva

Peoples’ Friendship University of Russia

Email: izhuravas@mail.ru
ORCID iD: 0000-0002-3973-8833
Moscow, Russian Federation

Madina M. Azova

Peoples’ Friendship University of Russia

Email: izhuravas@mail.ru
ORCID iD: 0000-0002-7290-1196
Moscow, Russian Federation

References

  1. Schoenaker DAJM, Jackson СА, Rowlands JV, Mishra GD. Socioeconomic position, lifestyle factors and age at natural menopause: a systematic review and meta-analyses of studies across six continents. Int. J. Epidemiol. 2014;43(5):1542-1562. doi: 10.1093/ije/dyu094
  2. Lumsden MA. The NICE Guideline - M enopause: diagnosis and management. Climacteric. 2016;19(5):426-429. doi: 10.1080/13697137.2016.1222483
  3. Ortmann O, Beckermann MJ, Inwald EC, Strowitzki T, Windler E, Tempfer C. Peri- and postmenopause-diagnosis and interventions interdisciplinary S 3 guideline of the association of the scientific medical societies in Germany (AWMF 015/062): short version. Arch Gynecol Obstet. 2020;302(3):763-777. doi: 10.1007/s00404-020-05682-4
  4. Khamoshina MB, Zhuravleva IS, Artemenko YS, Dmitrieva EM. Hormone-dependent diseases of the female reproductive system in the era of COVID-19: quo vadis? Obstetrics and Gynecology: news, opinions, training. 2021;9(3):35-42. https://doi.org/10.33029/23039698-2021-9-3suppI-35-42 (In Russian).
  5. Ulumbekova GE, Khudova IY. Assessment of demographic, social and economic effect when taking menopausal hormone therapy. Orgzdrav: news, opinions, training. Vestnik VSHOUZ. 2020;6(4):23- 53. https://doi.org/10.24411 / 2411-8621-2020-14002 (In Russian).
  6. Schulman S. Coronavirus Disease 2019, Prothrombotic Factors, and Venous. Thromboembolism. Semin Thromb Hemost. 2020;46(7):772-776. doi: 10.1055/s-0040-1710337
  7. Makatsariya AD, Slukhanchuk EV, Bitsadze VO, Khizroeva JK, Tretyakova MV, Tsibizova VI, Shkoda AS, Grandone E, Elalamy I, Rizzo G, Gris J-С, Schulman S, Brenner B. COVID-19, Hemostasis Disorders and Risk of Thrombotic Complications. Annals of the Russian Academy of Medical Sciences. 2020;75(4):306-317. doi: 10.15690/ vramn1368. (In Russian).
  8. Khamoshina M.B., Zhuravleva I.S., Dmitrieva E.M., Lebedeva M.G. Menopausal hormone therapy and postcovid syndrome: new realities. Medical Herald of the South of Russia. 2022;13(2):26-33. doi: 10.21886/2219-8075-2022-13-2-26-33 (In Russian).
  9. Seeland U, Coluzzi F, Simmaco M, Mura C, Bourne PE, Heiland M, Preissner R, Preissner S. Evidence for treatment with estradiol for women with SARS-CoV-2 infection. BMC Med. 2020;18(1):369. doi: 10.1186/s12916-020-01851-z
  10. Lapić I, Radić Antolic M, Horvat I, Premužić V, Palić J, Rogić D, Zadro R. Association of polymorphisms in genes encoding prothrombotic and cardiovascular risk factors with disease severity in COVID-19 patients: A pilot study. J Med Virol. 2022;94(8):3669-3675. doi: 10.1002/jmv.27774
  11. Gorodin VN, Moisova DL, Zotov SV, Vanyukov AA, Podsadnaya AA, Tikhonenko YV. The role of polymorphism of hemostasis genes in the pathogenesis of COVID-19. Infectious diseases. 2021;19(2):16-26. doi: 10.20953/1729-9225-2021-2-16-26 (In Russian).
  12. Subbotovskaya AI, Tsvetovskaya GA, Slepukhina AA, Lifshits GI. Polymorphism of the plasminogen activator inhibitor gene in assessing the risk of thrombosis of various localization (pilot study). Russ J Cardiol. 2015;10(126):50-53. https://doi.org/10.15829/15604071-2015-10-50-53 (In Russian).
  13. Burlacu A, Genovesi S, Popa IV, Crisan-Dabija R. Unpuzzling COVID-19 Prothrombotic State: Are Preexisting Thrombophilic Risk Profiles Responsible for Heterogenous Thrombotic Events? Clin Appl Thromb Hemost. 2020;26:1076029620952884. doi: 10.1177/1076029620952884
  14. Yalım Z, Tutgun Onrat S, Alan S, Aldemir M, Avşar A, Doğan İ, Onrat E. The effects of genetic polymorphisms and diabetes mellitus on the development of peripheral artery disease. Turk Kardiyol Dern Ars. 2020;48(5):484-493. doi: 10.5543/tkda.2020.15686
  15. Ponti G, Pastorino L, Manfredini M, Ozben T, Oliva G, Kaleci S, Iannella R, Tomasi A. COVID-19 spreading across world correlates with C 677T allele of the methylenetetrahydrofolate reductase (MTHFR) gene prevalence. J Clin Lab Anal. 2021;35(7): e23798. doi: 10.1002/jcla.23798
  16. Raghubeer S, Matsha TE. Methylenetetrahydrofolate (MTHFR), the One-Carbon Cycle, and Cardiovascular Risks. Nutrients. 2021;13(12):4562. doi: 10.3390/nu13124562
  17. Bouzidi N, Hassine M, Fodha H, Ben Messaoud M, Maatouk F, Gamra H, Ferchichi S. Association of the methylene-tetrahydrofolate reductase gene rs1801133 C 677T variant with serum homocysteine levels, and the severity of coronary artery disease. Sci. Rep. 2020;10:10064. doi: 10.1038/s41598-020-66937-3
  18. Fan Y, Wu L, Zhuang W. Methylenetetrahydrofolate Reductase Gene rs1801133 and rs1801131 Polymorphisms and Essential Hypertension Risk: A Comprehensive Analysis. Cardiovasc Ther. 2022;2022:2144443. doi: 10.1155/2022/2144443
  19. Liew SC, Gupta ED. Methylenetetrahydrofolate reductase (MTHFR) C 677T polymorphism: epidemiology, metabolism and the associated diseases. Eur J Med Genet. 2015;58(1):1-10. doi: 10.1016/j. ejmg.2014.10.004
  20. Liu YT, Lin CC, Wang L, Nfor ON, Hsu SY, Lung CC, Tantoh DM, Chang HR, Liaw YP. Peripheral Vascular Disease Susceptibility Based on Diabetes Mellitus and rs17367504 Polymorphism of the MTHFR Gene. Diabetes Metab Syndr Obes. 2021;14:2381-2388. doi: 10.2147/DMSO.S 309242
  21. Lu ML, Ku WC, Syifa N, Hu SC, Chou CT, Wu YH, Kuo PH, Chen CH, Chen WJ, Wu TH. Developing a Sensitive Platform to Measure 5-Methyltetrahydrofolate in Subjects with MTHFR and PON 1 Gene Polymorphisms. Nutrients. 2022;14(16):3320. doi: 10.3390/ nu14163320
  22. Ma L, Li J, Yuan Y, Chen W, Zhao J. Effect of methylenetetrahydrofolate reductase C 677T polymorphism on serum folate but not vitamin B 12 levels in patients with H-type hypertension. Mol Biol Rep. 2022;49(10):9535-9541. doi: 10.1007/s11033-022- 07844-w
  23. Kong Y, Han J, Wu X, Zeng H, Liu J, Zhang H. VEGF-D: a novel biomarker for detection of COVID-19 progression. Crit Care. 2020;24(1):373. doi: 10.1186/s13054-020-03079-y
  24. Remuzgo-Martínez S, Genre F, Pulito-Cueto V, Atienza-Mateo B, Mora Cuesta VM, Iturbe Fernández D, Fernández Rozas SM, Lera-Gómez L, Alonso Lecue P, Ussetti MP, Laporta R, Berastegui C, Solé A, Pérez V, De Pablo Gafas A, Gualillo O, Cifrián JM, LópezMejías R, González-Gay MÁ. Role of VEGF Polymorphisms in the Susceptibility and Severity of Interstitial Lung Disease. Biomedicines. 2021;9(5):458. doi: 10.3390/biomedicines9050458
  25. Shimizu Y, Arima K, Noguchi Y, Yamanashi H, Kawashiri SY, Nobusue K, Nonaka F, Aoyagi K, Nagata Y, Maeda T. Vascular endothelial growth factor (VEGF) polymorphism rs3025039 and atherosclerosis among older with hypertension. Sci Rep. 2022;12(1):5564. doi: 10.1038/s41598-022-09486-1
  26. Palmer BR, Paterson MA, Frampton CM, Pilbrow AP, Skelton L, Pemberton CJ, Doughty RN, Ellis CJ, Troughton RW, Richards AM, Cameron VA. Vascular endothelial growth factor-A promoter polymorphisms, circulating VEGF-A and survival in acute coronary syndromes. PLoS One. 2021;16(7): e0254206. doi: 10.1371/journal. pone.0254206
  27. Zhao X, Meng L, Jiang J, Wu X. Vascular endothelial growth factor gene polymorphisms and coronary heart disease: a systematic review and meta-analysis. Growth Factors. 2018;36(3-4):153-163. doi: 10.1080/08977194.2018.1477141
  28. Yin XX, Zheng XR, Peng W, Wu ML, Mao XY. Vascular Endothelial Growth Factor (VEGF) as a Vital Target for Brain Inflammation during the COVID-19 Outbreak. ACS Chem Neurosci. 2020;11(12):1704-1705. doi: 10.1021/acschemneuro.0c00294.
  29. Camarda N, Travers R, Yang VK, London C, Jaffe IZ. VEGF Receptor Inhibitor-Induced Hypertension: Emerging Mechanisms and Clinical Implications. Curr Oncol Rep. 2022;24(4):463-474. doi: 10.1007/s11912-022-01224-0
  30. Gnagnarella P, Raimondi S, Aristarco V, Johansson H, Bellerba F, Corso F, De Angelis SP, Belloni P, Caini S, Gandini S. Ethnicity as modifier of risk for Vitamin D receptors polymorphisms: Comprehensive meta-analysis of all cancer sites. Crit Rev Oncol Hematol. 2021;158:103202. doi: 10.1016/j.critrevonc.2020.103202.
  31. Gnagnarella P, Raimondi S, Aristarco V, Johansson HA, Bellerba F, Corso F, Gandini S. Vitamin D Receptor Polymorphisms and Cancer. Adv Exp Med Biol. 2020;1268:53-114. doi: 10.1007/978-3-030-46227-7_4
  32. Georgakopoulou A, Papadimitriou-Olivgeris M, Karakantza M, Marangos M. Role of inherited thrombophilic profile on survival of patients with sepsis. J Investig Med. 2019;67(8):1131-1135. doi: 10.1136/jim-2019-001034
  33. Fu L, Ma J, Yan S, Si Q. A meta-analysis of VDR polymorphisms and postmenopausal osteoporosis. Endocr Connect. 2020;9(9):882-889. doi: 10.1530/EC-20-0296
  34. Rivera-Paredez B, Quezada-Sánchez AD, Denova-Gutiérrez E, Torres-Ibarra L, Flores YN, Salmerón J, Velázquez-Cruz R. Diet Modulates the Effects of Genetic Variants on the Vitamin D Metabolic Pathway and Bone Mineral Density in Mexican Postmenopausal Women. J Nutr. 2021;151(7):1726-1735. doi: 10.1093/jn/nxab067
  35. Liao JL, Qin Q, Zhou YS, Ma RP, Zhou HC, Gu MR, Feng YP, Wang BY, Yang L. Vitamin D receptor Bsm I polymorphism and osteoporosis risk in postmenopausal women: a meta-analysis from 42 studies. Genes Nutr. 2020;15(1):20. doi: 10.1186/s12263-020-00679-9.
  36. Marozik P, Rudenka A, Kobets K, Rudenka E. Vitamin D Status, Bone Mineral Density, and VDR Gene Polymorphism in a Cohort of Belarusian Postmenopausal Women. Nutrients. 2021;13(3):837. doi: 10.3390/nu13030837
  37. Wang S, Ai Z, Song M, Yan P, Li J, Wang S. The association between vitamin D receptor FokI gene polymorphism and osteoporosis in postmenopausal women: a meta-analysis. Climacteric. 2021;24(1):74-79. doi: 10.1080/13697137.2020.1775806
  38. Deuster E, Jeschke U, Ye Y, Mahner S, Czogalla B. Vitamin D and VDR in Gynecological Cancers-A Systematic Review. Int J Mol Sci. 2017;18(11):2328. doi: 10.3390/ijms18112328
  39. Zeidan NMS, Lateef HMAE, Selim DM, Razek SA, AbdElrehim GAB, Nashat M, ElGyar N, Waked NM, Soliman AA, Elhewala AA, Shehab MMM, Ibraheem AAA, Shehata H, Yousif YM, Akeel NE, Hashem MIA, Ahmed AA, Emam AA, Abdelmohsen MM, Ahmed MF, Saleh ASE, Eltrawy HH, Shahin GH, Nabil RM, Hosny TA, Abdelhamed MR, Afify MR, Alharbi MT, Nagshabandi MK, Tarabulsi MK, Osman SF, Abd-Elrazek ASM, Rashad MM, El-Gaaly SAA, Gad SAB, Mohamed MY, Abdelkhalek K, Yousef AA. Vitamin D deficiency and vitamin D receptor FokI polymorphism as risk factors for COVID-19. Pediatr Res. 2022:1-8. doi: 10.1038/s41390-022-02275-6
  40. Zenciroglu A, Okumus N. Association of vitamin D receptor gene FokI and TaqI polymorphisms and risk of RDS. J Matern Fetal Neonatal Med. 2020 Nov;33(21):3640-3646. doi: 10.1080/147670 58.2019.1582629
  41. Ruiz-Ballesteros AI, Meza-Meza MR, Vizmanos-Lamotte B, Parra-Rojas I, de la Cruz-Mosso U. Association of Vitamin D Metabolism Gene Polymorphisms with Autoimmunity: Evidence in Population Genetic Studies. Int J Mol Sci. 2020 Dec 17;21(24):9626. doi: 10.3390/ijms21249626
  42. Dobrijevic Z, Robajac D, Gligorijevic N, Šunderic M, Penezic A, Miljuš G, Nedic O. The association of ACE 1, ACE 2, TMPRSS 2, IFITM3 and VDR polymorphisms with COVID-19 severity: A systematic review and meta-analysis. EXCLI J. 2022;21:818-839. doi: 10.17179/excli2022-4976
  43. Fernandez Lahore G, Raposo B, Lagerquist M, Ohlsson C, Sabatier P, Xu B, Aoun M, James J, Cai X, Zubarev RA, Nandakumar KS, Holmdahl R. Vitamin D 3 receptor polymorphisms regulate T cells and T cell-dependent inflammatory diseases. Proc Natl Acad Sci USA. 2020;117(40):24986-24997. doi: 10.1073/pnas.2001966117
  44. Scazzone C, Agnello L, Bivona G, Lo Sasso B, Ciaccio M. Vitamin D and Genetic Susceptibility to Multiple Sclerosis. Biochem Genet. 2021;59(1):1-30. doi: 10.1007/s10528-020-10010-1
  45. Yang X, Ru J, Li Z, Jiang X, Fan C. Lower vitamin D levels and VDR FokI variants are associated with susceptibility to sepsis: a hospital-based case-control study. Biomarkers. 2022;27(2):188-195. doi: 10.1080/1354750X.2021.2024598
  46. Memon MA, Baig S, Siddiqui PQR. Fok1 VDR Gene Polymorphisms as the Risk factor for Diabetes Mellitus. J Coll Physicians Surg Pak. 2022 May;32(5):581-585. doi: 10.29271/jcpsp.2022.05.581
  47. Sattar NA, Shaheen S, Hussain F, Jamil A. Association analysis of vitamin D receptor gene polymorphisms in North England population with Type 2 diabetes mellitus. Afr Health Sci. 2021;21(1):8-14. doi: 10.4314/ahs.v21i1.3
  48. Totonchi H, Rezaei R, Noori S, Azarpira N, Mokarram P, Imani D. Vitamin D Receptor Gene Polymorphisms and the Risk of Metabolic Syndrome (MetS): A Meta-Analysis. Endocr Metab Immune Disord Drug Targets. 2021;21(5):943-955. doi: 10.2174/18715303 20666200805101302
  49. Yao Liu, Shen HW, Ye XH, He XF. Evaluation of association studies and a systematic review and meta-analysis of VDR polymorphisms in type 2 diabetes mellitus risk. Medicine (Baltimore). 2021 Jul 16;100(28): e25934. doi: 10.1097/MD.0000000000025934
  50. Yu S, Li X, Yu F, Mao Z, Wang Y, Xue Y, Sun H, Ba Y, Wang C, Li W. New evidence for associations between vitamin D receptor polymorphism and obesity: case-control and family-based studies. J Hum Genet. 2020;65(3):281-285. doi: 10.1038/s10038-019-0702-5.
  51. Faghfouri AH, Faghfuri E, Maleki V, Payahoo L, Balmoral A, Khaje Bishak Y. A comprehensive insight into the potential roles of VDR gene polymorphism in obesity: a systematic review. Arch Physiol Biochem. Arch Physiol Biochem. 2022;128(6):1645-1657. doi: 10.1080/13813455.2020.1788097
  52. Fronczek M, Strzelczyk JK, Osadnik T, Biernacki K, Ostrowska Z. VDR Gene Polymorphisms in Healthy Individuals with Family History of Premature Coronary Artery Disease. Dis Markers. 2021;2021:8832478. doi: 10.1155/2021/8832478
  53. González Rojo P, Pérez Ramírez C, Gálvez Navas JM, Pineda Lancheros LE, Rojo Tolosa S, Ramírez Tortosa MDC, Jiménez Morales A. Vitamin D-Related Single Nucleotide Polymorphisms as Risk Biomarker of Cardiovascular Disease. Int J Mol Sci. 2022;23(15):8686. doi: 10.3390/ijms23158686
  54. Santos BR, Casanova G, Silva TR, Marchesan LB, Oppermann K, Spritzer PM. Are vitamin D deficiency and VDR gene polymorphisms associated with high blood pressure as defined by the ACC/AHA 2017 criteria in postmenopausal women? Maturitas. 2021;149:26-33. doi: 10.1016/j.maturitas.2021.05.004
  55. Abdollahzadeh R, Shushizadeh MH, Barazandehrokh M, Choopani S, Azarnezhad A, Paknahad S, Pirhoushiaran M, Makani SZ, Yeganeh RZ, Al-Kateb A, Heidarzadehpilehrood R. Associati on of Vitamin D receptor gene polymorphisms and clinical/severe outcomes of COVID-19 patients. Infect Genet Evol. 2021;96:105098. doi: 10.1016/j.meegid.2021.105098
  56. Apaydin T, Polat H, Dincer Yazan C, Ilgin C, Elbasan O, Dashdamirova S, Bayram F, Tukenmez Tigen E, Unlu O, Tekin AF, Arslan E, Yilmaz I, Haklar G, Ata P, Gozu H. Effects of vitamin D receptor gene polymorphisms on the prognosis of COVID-19. Clin Endocrinol (Oxf). 2022 Jun;96(6):819-830. doi: 10.1111/cen.14664
  57. Interim guidelines for the prevention, diagnosis and treatment of novel coronavirus infection (COVID-19). Version 16 (08/18/2022). Ministry of Health of the Russian Federation 2022. 239 p. (In Russian).
  58. Greenhalgh T, Sivan M, Delaney B, Evans R, Milne R. Long covid-an update for primary care. BMJ. 2022.22;378:e072117. doi: 10.1136/bmj-2022-072117

Copyright (c) 2022 Zhuravleva I.S., Khamoshina M.B., Orazov M.R., Dmitrieva E.M., Azova M.M.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies