Physiological features of cells and microvasculature under the local hypothermia influence

Cover Page

Cite item

Abstract

Hypothermia or cold therapy is the local or systemic application of cold for therapeutic purposes. Local application of cold is used to control inflammation: pain and swelling, hematoma and trismus reduction. Despite the frequent use of cooling in prosthodontic rehabilitation and in physical therapy, as evidenced by many reports in the literature, there is scientific documentation that suggests disadvantages of using this treatment in maxillofacial surgery and oral surgery. Also the clinical studies that have been carried out in maxillofacial surgery and oral surgery have been conducted in an empirical manner, which casts doubt on the results. In view of this, it is relevant to study the mechanisms of microcirculatory preconditioning and hypothermia. This physiological process is so interesting for the development of medical devices of controlled hardware hypothermia to prevent inflammatory symptoms at the stage of rehabilitation by targeting the vascular and cellular component of the inflammatory process in different areas of the human body. To date, the use of local hardware controlled hypothermia in various pathological conditions in humans is a topical trend in medicine. Microcirculatory bloodstream is directly related to temperature factors. Although there are concepts of vascular spasm or dilatation in the microcirculatory bloodstream during systemic hypothermia, there are no reliable data on the cellular and vascular reactions during local hypothermia. In this paper, a search for fundamental and current scientific work on the topic of cellular and vascular changes under the influence of hypothermia was conducted. The search for data revealed that the mechanisms of intracellular hypothermia are of particular interest for the development of therapeutic treatments after surgical interventions in areas with extensive blood supply. With this in mind, it is relevant to investigate several areas: the role of endothelium, glycocalyx and blood cells in microcirculatory-mediated preconditioning and intracellular hypothermia, and in the molecular mechanism that regulates these processes, whether they occur in the same way in all tissues.

About the authors

Nijat A. Guseynov

Peoples’ Friendship University of Russia

Author for correspondence.
Email: nid.gus@mail.ru
ORCID iD: 0000-0001-7160-2023
Moscow, Russian Federation

Sergey G. Ivashkevich

Peoples’ Friendship University of Russia

Email: nid.gus@mail.ru
ORCID iD: 0000-0001-6995-8629
Moscow, Russian Federation

Evgeniy M. Boyko

Stavropol State Medical University

Email: nid.gus@mail.ru
ORCID iD: 0000-0002-1827-8487
Stavropol, Russian Federation

References

  1. Vaity C, Al-Subaie N, Cecconi M. Cooling techniques for targeted temperature management post-cardiac arrest. Crit Care. 2015;19(1):103. doi: 10.1186/s13054-015-0804-1
  2. Yamashita C, Nakagiri K, Yamashita T, Matsuda H, Wakiyama H, Yoshida M, Ataka K, Okada M. Mild hypothermia for temporary brain ischemia during cardiopulmonary support systems: report of three cases. Surg Today. 1999;29(2):182-185. doi:10.1007/ BF02482247
  3. Bernard SA, Gray TW, Buist MD, Jones BM, Silvester W, Gutteridge G, Smith K. Treatment of comatose survivors of out-ofhospital cardiac arrest with induced hypothermia. N Engl J Med. 2002;346(8):557-563. doi: 10.1056/NEJMoa003289
  4. do Nascimento-Júnior EM, Dos Santos GMS, Tavares Mendes ML, Cenci M, Correa MB, Pereira-Cenci T, Martins-Filho PRS. Cryotherapy in reducing pain, trismus, and facial swelling after third-molar surgery: Systematic review and meta-analysis of randomized clinical trials. J Am Dent Assoc. 2019;150(4):269-277. e1. doi: 10.1016/j.adaj.2018.11.008
  5. Andrews PJ, Sinclair HL, Rodríguez A, Harris B, Rhodes J, Watson H, Murray G. Therapeutic hypothermia to reduce intracranial pressure after traumatic brain injury: the Eurotherm3235 RCT. Health Technol Assess. 2018;22(45):1-134. doi: 10.3310/hta22450
  6. Lewis SR, Evans DJ, Butler AR, Schofield-Robinson OJ, Alderson P. Hypothermia for traumatic brain injury. Cochrane Database Syst Rev. 2017;9(9): CD001048. doi: 10.1002/14651858.CD001048.pub5.
  7. Duan H, Huber M, Ding JN, Huber C, Geng X. Local endovascular infusion and hypothermia in stroke therapy: A systematic review. Brain Circ. 2019;5(2):68-73. doi: 10.4103/bc.bc_9_19
  8. Teh DBL, Chua SM, Prasad A, Kakkos I, Jiang W, Yue M, Liu X, All AH. Neuroprotective assessment of prolonged local hypothermia post contusive spinal cord injury in rodent model. Spine J. 2018;18(3):507-514. doi: 10.1016/j.spinee.2017.10.066
  9. Vipin A, Kortelainen J, Al-Nashash H, Chua SM, Thow X, Manivannan J, Astrid, Thakor NV, Kerr CL, All AH. Prolonged Local Hypothermia Has No Long-Term Adverse Effect on the Spinal Cord. Ther Hypothermia Temp Manag. 2015;5(3):152-162. doi:10.1089/ ther.2015.0005
  10. Mayer SA, Kowalski RG, Presciutti M, Ostapkovich ND, McGann E, Fitzsimmons BF, Yavagal DR, Du YE, Naidech AM, Janjua NA, Claassen J, Kreiter KT, Parra A, Commichau C. Clinical trial of a novel surface cooling system for fever control in neurocritical care patients. Crit Care Med. 2004;32(12):2508-2515. doi: 10.1097/01. ccm.0000147441.39670.37
  11. Kollmar R, Schellinger PD, Steigleder T, Köhrmann M, Schwab S. Ice-cold saline for the induction of mild hypothermia in patients with acute ischemic stroke: a pilot study. Stroke. 2009;40(5):1907-1909. doi: 10.1161/STROKEAHA.108.530410
  12. Polderman KH, Herold I. Therapeutic hypothermia and controlled normothermia in the intensive care unit: practical considerations, side effects, and cooling methods. Crit Care Med. 2009;37(3):1101-1120. doi: 10.1097/CCM.0b013e3181962ad5
  13. Hemmen TM, Raman R, Guluma KZ, Meyer BC, Gomes JA, Cruz-Flores S, Wijman CA, Rapp KS, Grotta JC, Lyden PD. Intravenous thrombolysis plus hypothermia for acute treatment of ischemic stroke (ICTuS-L): final results. Stroke. 2010;41(10):2265-2270. doi:10.1161/ STROKEAHA.110.592295
  14. Truse R, Smyk M, Schulz J, Herminghaus A, Weber APM, Mettler-Altmann T, Bauer I, Picker O, Vollmer C. Regional hypothermia improves gastric microcirculatory oxygenation during hemorrhage in dogs. PLoS One. 2019;14(12): e0226146. doi: 10.1371/journal. pone.0226146
  15. Jackson TC, Kochanek PM. A New Vision for Therapeutic Hypothermia in the Era of Targeted Temperature Management: A Speculative Synthesis. Ther Hypothermia Temp Manag. 2019;9(1):13- 47. doi: 10.1089/ther.2019.0001
  16. Bergersen TK, Hisdal J, Walløe L. Perfusion of the human finger during cold-induced vasodilatation. Am J Physiol. 1999;276(3): R 731-R 737. doi: 10.1152/ajpregu.1999.276.3.R 731
  17. Schubert A. Side effects of mild hypothermia. J Neurosurg Anesthesiol. 1995;7(2):139-147. doi: 10.1097/00008506-199504000-00021
  18. Globus MY, Busto R, Dietrich WD, Martinez E, Valdes I, Ginsberg MD. Effect of ischemia on the in vivo release of striatal dopamine, glutamate, and gamma-aminobutyric acid studied by intracerebral microdialysis. J Neurochem. 1988;51(5):1455-1464. doi: 10.1111/j.1471-4159.1988.tb01111.x
  19. Illievich UM, Zornow MH, Choi KT, Scheller MS, Strnat MA. Effects of hypothermic metabolic suppression on hippocampal glutamate concentrations after transient global cerebral ischemia. Anesth Analg. 1994;78(5):905-911. doi: 10.1213/00000539-199405000-00012
  20. Polderman KH. Mechanisms of action, physiological effects, and complications of hypothermia. Crit Care Med. 2009;37(7 Suppl): S 186-S 202. doi: 10.1097/CCM.0b013e3181aa5241
  21. McManus T, Sadgrove M, Pringle AK, Chad JE, Sundstrom LE. Intraischaemic hypothermia reduces free radical production and protects against ischaemic insults in cultured hippocampal slices. J Neurochem. 2004;91(2):327-336. doi:10.1111/ j.1471-4159.2004.02711.x
  22. Caldwell JN, Matsuda-Nakamura M, Taylor NA. Interactions of mean body and local skin temperatures in the modulation of human forearm and calf blood flows: a three-dimensional description. Eur J Appl Physiol. 2016;116(2):343-352. doi: 10.1007/s00421-015-3288-4
  23. Brajkovic D, Ducharme MB, Frim J. Relationship between body heat content and finger temperature during cold exposure. J Appl Physiol. 2001;90(6):2445-2452. doi: 10.1152/jappl.2001.90.6.2445
  24. Harirchi I, Arvin A, Vash JH, Zafarmand V. Frostbite: incidence and predisposing factors in mountaineers. Br J Sports Med. 2005;39(12):898-901. doi: 10.1136/bjsm.2004.016097
  25. O’Brien C, Castellani JW, Muza SR. Acute Hypobaric Hypoxia Effects on Finger Temperature During and After Local Cold Exposure. High Alt Med Biol. 2015;16(3):244-250. doi: 10.1089/ham.2015.0024
  26. Rai RM, Selvamurthy W, Purkayastha SS, Malhotra MS. Effect of altitude acclimatization on thermoregulation efficiency of man. Aviat Space Environ Med. 1978;49(5):707-709.
  27. De Backer D, Durand A. Monitoring the microcirculation in critically ill patients. Best Pract Res Clin Anaesthesiol. 2014;28(4):441-451. doi: 10.1016/j.bpa.2014.09.005
  28. Thulesius O, Yousif MH. Na+, K(+)-ATPase inhibition, a new mechanism for cold-induced vasoconstriction in cutaneous veins. Acta Physiol Scand. 1991;141(1):127-128. doi: 10.1111/j.1748-1716.1991. tb09053.x
  29. Harker CT, Ousley PJ, Harris EJ, Edwards JM, Taylor LM, Porter JM. The effects of cooling on human saphenous vein reactivity to adrenergic agonists. J Vasc Surg. 1990;12(1):45-49. doi:10.1067/ mva.1990.20311
  30. Vanhoutte PM, Shepherd JT. Effect of cooling on betareceptor mechanisms in isolated cutaneous veins of the dog. Microvasc Res. 1970;2(4):454-461. doi: 10.1016/0026-2862(70)90038-5
  31. Bodelsson M, Arneklo-Nobin B, Törnebrandt K. Effect of cooling on smooth muscle response to 5-hydroxytryptamine in human hand veins. Acta Physiol Scand. 1990;140(3):331-339. doi: 10.1111/j.1748-1716.1990.tb09007.x
  32. Sagher O, Huang DL, Webb RC. Induction of hypercontractility in human cerebral arteries by rewarming following hypothermia: a possible role for tyrosine kinase. J Neurosurg. 1997;87(3):431-435. doi: 10.3171/jns.1997.87.3.0431
  33. Saito W, Noguchi K, Okazaki K, Matsuda T, Kato Y, Tanaka H, Shigenobu K. Temperature-sensitive effects of potassium channel openers on isolated guinea pig myocardium and aorta. J Cardiovasc Pharmacol. 1998;31(2):327-329. doi: 10.1097/00005344199802000-00021
  34. García-Villalón AL, Fernández N, Monge L, García JL, Gómez B, Diéguez G. Role of nitric oxide and potassium channels in the cholinergic relaxation of rabbit ear and femoral arteries: effects of cooling. J Vasc Res. 1995;32(6):387-397. doi: 10.1159/000159114
  35. Mustafa SM, Thulesius O. Cooling-induced bladder contraction: studies on isolated detrusor muscle preparations in the rat. Urology. 1999;53(3):653-657. doi: 10.1016/s0090-4295(98)00568-8
  36. Mustafa SM, Pilcher CW, Williams KI. Cooling-induced contraction in ovine airways smooth muscle. Pharmacol Res. 1999;39(2):113-123. doi: 10.1006/phrs.1998.0413
  37. Ogura K, Takayasu M, Dacey RG Jr. Effects of hypothermia and hyperthermia on the reactivity of rat intracerebral arterioles in vitro. J Neurosurg. 1991;75(3):433-439. doi: 10.3171/jns.1991.75.3.0433
  38. Herrera B, Eisenberg G, Holberndt O, Desco MM, Rábano A, García-Barreno P, Del Cañizo JF. Paradoxical effects of temperature on vascular tone. Cryobiology. 2000;41(1):43-50. doi:10.1006/ cryo.2000.2263
  39. Mustafa S. Cooling and bronchodilators. The Clinical Respiratory Journal. 2015;9:74-78. https://doi.org/10.1111/crj.12108
  40. Herrera B, Desco MM, Eisenberg G, García-Barreno P, Del Cañizo JF. Role of elastic fibers in cooling-induced relaxation. Cryobiology. 2002;44(1):54-61. doi:10.1016/S 0011-2240(02)00004-4
  41. Mustafa S, Thulesius O. Cooling-induced carotid artery dilatation: an experimental study in isolated vessels. Stroke. 2002;33(1):256-260. doi: 10.1161/hs0102.101545
  42. Standen NB, Quayle JM. K+ channel modulation in arterial smooth muscle. Acta Physiol Scand. 1998;164(4):549-557. doi: 10.1046/j.1365-201X.1998.00433.x
  43. da Costa CS, Greisen G, Austin T. Is near-infrared spectroscopy clinically useful in the preterm infant? Arch Dis Child Fetal Neonatal Ed. 2015;100(6): F558-F561. doi:10.1136/ archdischild-2014-307919
  44. Fredly S, Nygaard CS, Skranes JH, Stiris T, Fugelseth D. Cooling Effect on Skin Microcirculation in Asphyxiated Newborn Infants with Increased C-Reactive Protein. Neonatology. 2016;110(4):270-276. doi: 10.1159/000446763
  45. Caminos Eguillor JF, Ferrara G, Kanoore Edul VS, Buscetti MG, Canales HS, Lattanzio B, Gatti L, Gutierrez FJ, Dubin A. Effects of Systemic Hypothermia on Microcirculation in Conditions of Hemodynamic Stability and in Hemorrhagic Shock. Shock. 2021;55(5):686-692. doi: 10.1097/SHK.0000000000001616
  46. Chalkias A, Mamais I, Xanthos T. Microcirculation-mediated preconditioning and intracellular hypothermia. Med Hypotheses. 2018;115:8-12. doi: 10.1016/j.mehy.2018.03.006
  47. Muraev A.A., Ivanov S. Yu. Compression mask for postoperative cooling patient’s soft facial tissue. Patent for invention RU 2645646 C 1, 26.02.2018. Application № 2017121995 for 22.06.2017.

Copyright (c) 2022 Guseynov N.A., Ivashkevich S.G., Boyko E.M.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies