Features of angiogenesis in eye diseases

Cover Page

Cite item

Abstract

Based on the analysis of published data, the review provides information on the role and mechanisms of angiogenesis in the development of eye diseases. It has been shown that the developing inflammatory process associated with infections or damage to the organ of vision almost always leads to the appearance of newly formed vessels in the avascular cornea. The progression, in particular, of age-related macular degeneration is associated with the immune-mediated development of angiogenesis processes. A key inducer of angiogenesis is vascular endothelial growth factor (VEGF), whose activity can be enhanced by a number of pro-inflammatory cytokines (tumor necrosis factor alpha, TNF-α), growth (fibroblast growth factor, FGF) and transforming factors (transforming growth factor beta, TGF- β). In addition, VEGF overproduction is mediated by an imbalance of pro-angiogenic (angiogenin) and anti-angiogenic (angiostatin, vasostatin, endostatin; tissue inhibitors of matrix metalloproteinases) factors. Antiangiogenic activity based on inhibition of vascular endothelial growth factor (VEGF) has been successfully used in the treatment of a number of eye diseases, such as exudative age-related macular degeneration and diabetic macular edema, the pathogenesis of which is based on the growth of newly formed vessels. The review presents information on the main anti-angiogenic drugs for intravitreal administration, used in ophthalmology.

About the authors

T. A. Khalimov

Ufa Eye Research Institute

Author for correspondence.
Email: khalimoff.timur@yandex.ru
ORCID iD: 0000-0001-7141-3214
Ufa, Russian Federation

References

  1. Stitt AW, Simpson DA, Boocock C, Gardiner TA, Murphy GM, Archer DB. Expression of vascular endothelial growth factor (VEGF) and its receptors is regulated in eyes with intra-ocular tumours. J. Pathol. 1998;186:306-312. doi: 10.1002/(SICI)1096-9896(1998110)186:3<306: :AID-PATH183>3.0.CO;2-B
  2. Bikbov MM, Faizrakhmanov RR, Yarmukhametova AL. Age-related macular degeneration. Moscow: April. 2013;196. (In Russ).
  3. Mikhailichenko VYu., Ivaschenko AS. VEGF pathophysiology in retinal vein thrombosis and antiangiogenic therapy. Kharkiv surgical school. 2014;5(68):65-69. (In Russ).
  4. Bikbov M, Gilmanshin T, Zainullin R, Kazakbaeva G, Rakhimova E, Safiullina K, Panda-Jonas S, Rusakova Iu, Bolshakova N, Bikbova G, Jonas JB. Prevalence and associated factors of diabetic retinopathy in a Russian Population. The Ural Eye and Medical Study Invest. Ophthalmol. Vis. Sci. 2019;60(9):3959.
  5. Bikbov M, Zainullin R, Gilmanshin T, Kazakbaeva G, Rakhimova E, Rusakova Yu, et al. Prevalence and Associated Factors of Age-Related Macular Degeneration in a Russian Population: The Ural Eye and Medical Study. Am. Journal of Ophthalmology. 2020;210:146-157. doi: 10.1016/j.ajo.2019.10.004
  6. Teo Z, Tham Y, Yu M, Cheng Ch, Wong T, Sabanayagam C. Do we have enough ophthalmologists to manage vision-threatening diabetic retinopathy? A global perspective Eye (Lond). 2020;34(7):1255-1261. doi: 10.1038/s41433-020-0776-5.
  7. Klein R, Peto T, Bird A. et al. The epidemiology of age-related macular degeneration. Am. J. Ophthalmol. 2004;137:486-495. doi: 10.1016/j.ajo.2003.11.069
  8. Killingsworth MC, Sarks JP, Sarks SH. Macrophages related to Bruch’s membrane in age-related macular degeneration. Eye (Lond). 1990;4(Pt4):613-621. doi: 10.1038/eye.1990.86
  9. Sarks JP, Sarks SH, Killingsworth MC. Morphology of early choroidal neovascularisation in age-related macular degeneration: correlation with activity. Eye (Lond). 1997;11(Pt 4):515-522. doi: 10.1038/eye.1997.137
  10. Oh H, Takagi H, Takagi C, Suzuma K. Otani A, Ishida K, Matsumura M, Ogura Y, Honda Y. The potential angiogenic role of macrophages in the formation of choroidal neovascular membranes. Invest. Ophthalmol. Vis. Sci. 1999;40(9):1891-1898.
  11. Ehrlich R, Harris A, Kheradiya NS, Winston DM, Ciulla TA, Wirostko B. Age-related macular degeneration and the aging eye. Clin. Interv. Aging. 2008;3(3):473-482. doi: 10.2147/cia.s2777
  12. Chekhonin VP, Shein SA, Korchagina AA, Gurina OI. VEGF in neoplastic angiogenesis. Annals of the Russian Academy of Medical Sciences 2012;2:23-34. (In Russ).
  13. Connolly D, Heivelman D, Nelson R, Olander J, Eppley B, Delfino J, Siegel N, Leimgruber R, Feder J. Tumor vascular permeability factor stimulates endothelial cell growth and angiogenesis. Journ. of Clinical Investigation. 1989;84(5):1470-1478. doi: 10.1172/JCI114322
  14. Miletic H, Niclou SP, Johansson M, Bjerkvig R. Anti-VEGF therapies for malignant glioma: treatment effects and escape mechanisms. Expert Opin Ther Targets. 2009;13(4):455-468. doi: 10.1517/14728220902806444
  15. Steele FR, Chader GJ, Johnson LV, Tombran-Tink J. Pigment epithelium-derived factor: neurotrophic activity and identification as a member of the serine protease inhibitor gene family. Proc Natl Acad Sci USA. 1993;90(4):1526-1530. doi: 10.1073/pnas.90.4.1526.
  16. Folkman J. Angiogenesis. Annu. Rev. Med. 2006;57:1-18. doi: 10.1146/annurev.med.57.121304.131306
  17. Greenberg D, Jin K. From angiogenesis to neuropathology. Nature. 2005;438(7070):954-959. doi: 10.1038/nature04481
  18. Rosen LS. Clinical experience with angiogenesis signaling inhibitors: focus on vascular endothelial growth factor (VEGF) blockers. Cancer Control. 2002;9(2 Suppl):36-44. doi: 10.1177/107327480200902S05
  19. Witmer AN, Vrensen GF, Van Noorden CJ, Schlingemann RO. Vascular endothelial growth factors and angiogenesis in eye disease. Prog Retin Eye Res. 2003;22(1):1-29. doi: 10.1016/s1350-9462(02)00043-5
  20. Spilsbury K, Garrett KL, Shen WY, Constable IJ, Rakoczy PE. Overexpression of vascular endothelial growth factor (VEGF) in the retinal pigment epithelium leads to the development of choroidal neovascularization. Am. J. Pathol. 2000;157:135-144. doi: 10.1016/S0002-9440(10)64525-7
  21. Iskakova S, Zharmakhanova G, Dworacka M. Characterization of proangiogenic factors and their pathogenetic role (review). Science and healthcare. 2013;6:8-12. (In Russ).
  22. Przybylski M. A review of the current research on the role of bFGF and VEGF in angiogenesis. J. Wound Care. 2009;18(12):516-519. doi: 10.12968/jowc.2009.18.12.45609
  23. Shurygin MG, Dremina NN, Shurygina IA. Machkhin IN. The main activators of angiogenesis and their use in cardiology. Annals of the Eastern Siberian Scientific Center of the Siberian Department of the Russian Academy of Medical Sciences. 2005;6(44):199-207. (In Russ).
  24. Podgrebelny AN, Smirnova OM, Dedov I., Ilyin AV, Nikankina LV. et al. Atherosclerosis and growth factors in patients with type 2 diabetes. Diabetes mellitus 2005;1:26-29. (In Russ).
  25. Gulyayev AY, Lokhvitski SV, Tusupkhanov BA. Wound healing effects of man’s recombined angiogenin. Medicine and ecology. 2010;3:9-12. (In Russ).
  26. Batiushin MM, Gadaborsheva KhZ. Monocyte chemoattractant protein-1: its role in the development of tubulointerstitial fibrosis in nephropathies. Medical news of North Caucasus. 2017;12(2):234-239. (In Russ).
  27. Malinovskaya II. Vascular endothelial growth factor inhibitors in the treatment of diabetic macular edema. Surgery news. 2011;19(3):118-125. (In Russ).
  28. Kachalina GF, Doga AV, Kasmynina TA, Kuranova OI. Epiretinal fibrosis: pathogenesis, outcomes, methods of treatment. Ophthalmosurgery. 2013;4:108-110. (In Russ).
  29. Khalimov TA, Akhtyamov KN, Gabsalikova RT, Sarvarov DA. Pathogenesis epiretinal membranes (literature review). Point of view. East-West. 2018;2:116-118. (In Russ). doi: 10.25276/2410-1257-2018-2-116-118
  30. Tikhonovich MV, Ioyleva EE. The role of vascular endothelial growth factor in the physiology of the retina. Annals of the Orenburg State University. 2015;12(187):244-249. (In Russ).
  31. Bikbov MM, Zainullin RM, Gilmanshin TR, Khalimov TA. Сomparative Analysis of the Long-Term Results of Diabetic Macular Edema and Epiretinal Membrane Surgical Treatment. Ophthalmology in Russia. 2019;16(1S):33-39 (In Russ). doi:18008/1816-5095-2019-1S-33-39
  32. Efron N. Vascular response of the cornea to contact lens wear. J. Am. Optom. Assoc. 1987;58(10):836-846.
  33. Ribatti D, Nico B, Crivellato E. Morphological and molecular aspects of physiological vascular morphogenesis. Angiogenesis. 2009;12(2):101-111. doi: 10.1007/s10456-008-9125-1
  34. Chertok VM, Chertok AG, Zenkina VG. Endotelial-dependent of the regulation of angiogenesis. Cytology. 2017; 59(4): 243-258. (In Russ).
  35. Digtyar AV, Pozdnyakova NV, Feldman NB, Lutsenko SV, Severin SE. Endostatin: current concepts about biological role and mechanisms of action. Biochemistry. 2007;72(3):291-305. (In Russ).
  36. Javaherian K. Lee TY, Tjin Tham Sjin RM, Parris GE, Hlatky L. Two endogenous antiangiogenic inhibitors, endostatin and angiostatin, demonstrate biphasic curves in their antitumor profiles. Dose Response. 2011;9(3):369-376. doi: 10.2203/dose-response.10-020.Javaherian
  37. Rhim TY, Park CS, Kim E, Kim SS. Human prothrombin fragment 1 and 2 inhibit bFGF-induced BCE cell growth. Biochem Biophys Res Commun. 1998;252(2):513-516. doi: 10.1006/bbrc.1998.9682
  38. Mansour A, Chhablani J, Antonios R, Yogi R, Younis M, Dakroub R, Chahine H. Three-month outcome of ziv-aflibercept for exudative age-related macular degeneration. Br. J. Ophthalmol. 2016;100(12):1629-1633. doi: 10.1136/bjophthalmol-2015-308319
  39. Gilmanshin ТR, Fayzrakhmanov RR, Arslangareeva II, Khalimov ТА. Local ways of application of medicines in ophthalmology: advantages and disadvantages (literature review). Point of view. East-West. 2016;3:165-168. (In Russ).
  40. Zainullin RM, Gilmanshin TR, Kudoyarova KI, Khalimov TA, Gabsalikova RT. Treatment of the wet form of age-related macular degeneration (literature review). Point of view. East-West. 2019;2:124-128. (In Russ). doi: 10.25276/2410-1257-2019-1-124-128

Copyright (c) 2021 Khalimov T.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies