Междисциплинарные научные связи в содержании обучения прикладной математике
- Авторы: Корнилов В.С.1
-
Учреждения:
- Московский городской педагогический университет
- Выпуск: Том 16, № 2 (2019)
- Страницы: 162-172
- Раздел: ИННОВАЦИОННЫЕ ПЕДАГОГИЧЕСКИЕ ТЕХНОЛОГИИ В ОБРАЗОВАНИИ
- URL: https://journals.rudn.ru/informatization-education/article/view/21648
- DOI: https://doi.org/10.22363/2312-8631-2019-16-2-162-172
Цитировать
Полный текст
Аннотация
Проблема и цель. Сегодня к выпускникам, обучающихся на физико-математических направлениях подготовки по профилю прикладной математики, предъявляются высокие требования [23; 24]. Они должны иметь не только фундаментальные знания по дисциплинам прикладной математики, обладать научным мировоззрением, умениями и навыками исследования прикладных задач при помощи математического моделирования, но и стремиться реализовывать прикладные исследования природоохранными технологиями. Достижение таких целей при обучении студентов прикладной математике требует использования в учебном процессе различных педагогических и информационных технологий, разработки содержания обучения, новых форм и методов обучения, привлечения к преподавательской деятельности специалистов по прикладной математике. Методология. В процессе подготовки специалистов по прикладной математике реализуются идеи развития их математических творческих способностей, усиление мотивации к формированию глубоких теоретических и практических знаний по дисциплинам прикладной математики и основ гуманитарной культуры. Реализация этих важных идей осуществляется на базе широкого использования междисциплинарных научных связей в условиях гуманитаризации вузовского математического образования. Формирование студентами фундаментальных знаний по прикладной математике и основ гуманитарной культуры достигается разработкой содержания обучения на основе современных научных достижений прикладной математики, реализацией научно-образовательного, научно-познавательного и гуманитарного потенциала обучения прикладной математике. Результаты. Полученные фундаментальные знания по прикладной математике, сформированное научное мировоззрение и гуманитарная культура позволят выпускникам в своей будущей профессиональной деятельности проявлять гуманное отношение к природе и окружающему миру, применять природоохранные технологии при реализации прикладных исследований. Кроме того, с таким багажом знаний выпускники способны стать достойными членами современного информационного общества с гуманитарной культурой. Заключение. В процессе обучения прикладной математике, применяя инновационные педагогические технологии, целесообразно не только давать студентам фундаментальные научные знания, но и прививать основы гуманитарной культуры.
Об авторах
Виктор Семенович Корнилов
Московский городской педагогический университет
Автор, ответственный за переписку.
Email: vs_kornilov@mail.ru
доктор педагогических наук, кандидат физико-математических наук, профессор, заместитель заведующего кафедрой информатизации образования Московского городского педагогического университета
Российская Федерация, 127521, Москва, ул. Шереметьевская, 29Список литературы
- Араманович И.Г., Левин В.И. Уравнения математической физики. М.: Наука, 1969. 286 с.
- Арнольд В.И. «Жесткие и мягкие» математические модели. М.: МЦНМО, 2004. 32 с.
- Арсенин В.Я. Методы математической физики и специальные функции. М.: Наука, 1984. 383 с.
- Ашихмин В.Н. Введение в математическое моделирование: учебное пособие. М.: Логос, 2015. 440 с.
- Бидайбеков Е.Ы., Корнилов В.С., Камалова Г.Б. Обучение будущих учителей математики и информатики обратным задачам для дифференциальных уравнений // Вестник Московского городского педагогического университета. Серия: Информатика и информатизация образования. 2014. № 3 (29). С. 57—69.
- Блехман И.М., Мышкис А.Д., Пановко Я.Г. Прикладная математика: предмет, логика, особенности подходов. М.: КомКнига, 2005. 376 с.
- Болотелов Н.В., Бродский Ю.И., Павловский Ю.Н. Сложность. Математическое моделирование. Гуманитарный анализ: исследование исторических, военных, социально-экономических и политических процессов. М.: Либроком, 2009. 320 с.
- Бордовский Г.А., Кондратьев А.С., Чоудери А.Д.Р. Физические основы математического моделирования: учебное пособие. М.: Aкадемия, 2005. 316 с.
- Вайцзеккер Э., Ловинс Э., Ловинс Л. Фактор четыре. М.: Академия, 1997. 400 с.
- Зельдович Я.Б., Мышкис А.Д. Элементы прикладной математики. М.: Наука, 1967. 646 с.
- Корнилов В.С. Вузовская подготовка специалистов по прикладной математике — история и современность // Наука и школа. 2006. № 4. С. 10—12.
- Корнилов В.С. Лабораторные занятия как форма организации обучения студентов фрактальным множествам // Вестник Московского городского педагогического университета. Серия: Информатика и информатизация образования. 2012. № 1 (23). С. 60—63.
- Корнилов В.С. Обратные задачи в содержании обучения прикладной математике // Вестник Российского университета дружбы народов. Серия: Информатизация образования. 2014. № 2. С. 109—118.
- Корнилов В.С. Обучение студентов обратным задачам математической физики как фактор формирования фундаментальных знаний по интегральным уравнениям // Бюллетень лаборатории математического, естественнонаучного образования и информатизации: рецензируемый сборник научных трудов. Т. VI. Самара: Самарский филиал МГПУ, 2015. С. 251—257.
- Корнилов В.С. Реализация научно-образовательного потенциала обучения студентов вузов обратным задачам для дифференциальных уравнений // Казанский педагогический журнал. 2016. № 6. С. 55—59.
- Корнилов В.С. Теория и методика обучения обратным задачам для дифференциальных уравнений: монография. М.: ОнтоПринт, 2017. 500 с.
- Корнилов В.С. Формирование фундаментальных знаний по математическому моделированию при обучении обратным задачам для дифференциальных уравнений // Вестник Московского городского педагогического университета. Серия: Информатика и информатизация образования. 2017. № 1 (39). С. 92—99.
- Корнилов В.С., Карташова Л.И. Практикум по прикладной математике: учебно-методическое пособие. Воронеж: Научная книга, 2013. 100 с.
- Лаврентьев М.М., Романов В.Г., Шишатский С.П. Некорректные задачи математической физики и анализа. М.: Наука, 1980. 286 с.
- Левченко И.В., Корнилов В.С., Беликов В.В. Роль информатики в подготовке специалистов по прикладной математике // Вестник Московского городского педагогического университета. Серия: Информатика и информатизация образования. 2009. № 2 (18). С. 108—112.
- Мартинсон Л.К., Малов Ю.И. Дифференциальные уравнения математической физики. М.: МГТУ имени Н.Э. Баумана, 1996. 367 с.
- Некорректные задачи естествознания: сборник научных трудов / под ред. А.Н. Тихонова, А.В. Гончарского. М.: Изд-во Московского университета, 1987. 303 с.
- Портал Федеральных государственных образовательных стандартов высшего образования по направлениям бакалавриата. URL: http://fgosvo.ru/fgosvo/92/91/4/28 (дата обращения: 15.01.2019).
- Портал Федеральных государственных образовательных стандартов высшего образования по направлениям магистратуры. URL: http://fgosvo.ru/fgosvo/93/91/5/30 (дата обращения: 15.01.2019).
- Современные проблемы прикладной математики: сборник научно-популярных статей. Вып. 1 / под ред. А.А. Петрова. М.: МЗ Пресс, 2005. 231 с.
- Тарасевич Ю.Ю. Математическое и компьютерное моделирование. Вводный курс: учебное пособие. М.: Едиториал УРСС, 2004. 152 с.
- Избранные труды А.Н. Тихонова. М.: МАКС Пресс, 2001. 485 с.
- Тимофеев Ю.М., Поляков А.В. Математические аспекты решения обратных задач атмосферной оптики: учебное пособие. СПб.: Изд-во Санкт-Петербургского университета, 2001. 188 с.
- Тихонов А.Н., Арсенин В.Я. Методы решения некорректных задач. М.: Наука, 1986. 287 с.
- Тихонов А.Н., Костомаров Д.П. Рассказы о прикладной математике. М.: Наука, 1979. 206 с.
- Тихонов А.Н., Самарский А.А. Уравнения математической физики. М.: Изд-во МГУ, 1999. 798 c.
- Юрко В.А. Введение в теорию обратных спектральных задач: учебное пособие. М.: Физматлит, 2007. 384 c.