Гуманитарные знания в содержании обучения обратным задачам для дифференциальных уравнений

Обложка

Цитировать

Полный текст

Аннотация

Проблема и цель. В настоящее время гуманитаризация является тенденцией развития многих научных и образовательных областей, к числу которых, бесспорно, относится и прикладная математика. Очевиден существенный вклад прикладной математики в развитие человеческой цивилизации. Вместе с тем широко известно, что в некоторых случаях практическая реализация прикладных исследований влечет за собой глобальные экологические проблемы. Происходят необратимые негативные процессы в окружающей среде. Подобные ситуации неизбежно приводят к противоречию современных достижений мировой науки и ее социально-нравственных аспектов. Это проблема осознается не только учеными. Неслучайно одним из направлений совершенствования российской системы образования является гуманитаризация математического образования, концепция содержания которой разрабатываться с девяностых годов прошлого столетия. Одним из аспектов гуманитаризации математического образования является экологическое воспитание студентов. Определенный вклад в формирование экологического воспитания студентов физико-математических специальностей вузов вносит обучение обратным задачам для дифференциальных уравнений, содержание которого формируется на основе теории обратных задач для дифференциальных уравнений. В связи с чем в процессе обучения обратным задачам для дифференциальных уравнений реализуются такие цели, как: знакомство студентов с основами гуманитарного анализа прикладных исследований, научение студентов самостоятельно формулировать логические выводы прикладного и гуманитарного характера по результатам исследования обратной задачи для дифференциальных уравнений. Методология. Достижение отмеченных выше дидактических целей обучения обратным задачам для дифференциальных уравнений во многом обеспечивается тем, насколько успешно будут осуществлены на практике следующие дидактические задачи обучения: 1. реализация гуманитарного потенциала обучения обратным задачам для дифференциальных уравнений; 2. формирование у студентов умений и навыков самостоятельного анализа прикладного и гуманитарного характера результатов исследования обратных задач для дифференциальных уравнений; 3. обоснование роли прикладной и вычислительной математики в развитии человеческой цивилизации. Кроме того, в процессе обучения студентов обратным задачам для дифференциальных уравнений целесообразно реализовывать систему гуманитарно-ориентированных учебных занятий. Это обусловлено тем, что в процессе такого обучения студенты приобретают фундаментальные знания не только в области математических методов исследования подобных прикладных задач. В процессе обучения обратным задачам студентам прививаются черты гуманитаризации. Результаты. В процессе обучения обратным задачам для дифференциальных уравнений студенты приобретают умения и навыки анализировать полученные решения обратных задач, формулировать логические выводы об экологическом состоянии воздушного пространства, земной или водной среды, применять численные результаты решений обратных задач в гуманитарном анализе прикладных исследований. Заключение. Фундаментальные знания в области обратных задач для дифференциальных уравнений, умения и навыки использования этих знаний в своей профессиональной деятельности, обладание гуманитарной культурой, осознание гуманных отношений своей прикладной деятельности с окружающей средой и обществом способствует формированию у студентов духовности, развитию мировоззрения и осознания сопричастности к цивилизованному развитию общества.

Об авторах

Виктор Семенович Корнилов

Московский городской педагогический университет

Автор, ответственный за переписку.
Email: vs_kornilov@mail.ru

доктор педагогических наук, кандидат физико-математических наук, профессор, заместитель заведующего кафедрой информатизации образования Московского городского педагогического университета

Российская Федерация, 127521, Москва, ул. Шереметьевская, 29

Список литературы

  1. Бидайбеков Е.Ы., Корнилов В.С., Камалова Г.Б. Обучение будущих учителей математики и информатики обратным задачам для дифференциальных уравнений // Вестник Московского городского педагогического университета. Серия: Информатика и информатизация образования. 2014. № 3 (29). С. 57-69.
  2. Бидайбеков Е.Ы., Корнилов В.С., Сапарбекова Г.А. Эффективность обучения студентов вузов прикладной математике в условиях гуманитаризации математического образования // Вестник Казахского национального педагогического университета имени Абая. Серия: Физико-математические науки. 2015. № 4 (52). С. 13-18.
  3. Болотелов Н.В., Бродский Ю.И., Оленев Н.Н., Павловский Ю.Н. Эколого-социально-экономические модели: гуманитарный и информационный аспекты // Информационное общество. 2001. № 6. С. 43-51.
  4. Бухгейм А.Л. Уравнения Вольтерра и обратные задачи: монография. Новосибирск: Наука, Сибирское отделение, 1983. 207 с.
  5. Ватульян А.О., Беляк О.А., Сухов Д.Ю., Явруян О.В. Обратные и некорректные задачи: учеб. пособие. Ростов на Дону: Изд-во Южного федерального университета, 2011. 232 с.
  6. Денисов А.М. Введение в теорию обратных задач: учебное пособие. М.: Изд-во Московского университета, 1994. 207 с.
  7. Еланова М.М., Мантатова Л.В. Гуманизация образования в целях устойчивого развития: монография. Улан-Удэ, 2006. 154 с.
  8. Иванова Т.А. Теоретические основы гуманитаризации общего математического образования: дис.. д-ра пед. наук. Нижний Новгород, 1998. 338 с.
  9. Кабанихин С.И. Обратные и некорректные задачи: учебник для студентов вузов. Новосибирск: Сибирское научное издательство, 2009. 458 c.
  10. Комиссарова С.А. Задачная технология как средство гуманитаризации естественнонаучного образования: дис.. канд. пед. наук. Волгоград, 2002. 215 c.
  11. Корнилов В.С. О междисциплинарном характере исследований причинно-следственных обратных задач // Вестник Московского городского педагогического университета. Серия: Информатика и информатизация образования. 2004. № 1 (2). С. 80-83.
  12. Корнилов В.С. Некоторые обратные задачи идентификации параметров математических моделей: учебное пособие. М.: МГПУ, 2005. 359 с.
  13. Корнилов В.С. Гуманитарная компонента прикладного математического образования // Вестник Московского городского педагогического университета. Серия: Информатика и информатизация образования. 2006. № 2 (7). С. 94-99.
  14. Корнилов В.С. Обучение обратным задачам для дифференциальных уравнений как фактор гуманитаризации математического образования: монография. М.: МГПУ, 2006. 320 с.
  15. Корнилов В.С. Гуманитарные аспекты вузовской системы прикладной математической подготовки // Наука и школа. 2007. № 5. С. 23-28.
  16. Корнилов В.С. Гуманитарный анализ математических моделей обратных задач // Известия Курского государственного технического университета. 2008. № 3 (24). С. 60-65.
  17. Корнилов В.С. Психологические аспекты обучения студентов вузов фрактальным множествам // Вестник Российского университета дружбы народов. Серия: Информатизация образования. 2011. № 4. С. 79-82.
  18. Корнилов В.С. Лабораторные занятия как форма организации обучения студентов фрактальным множествам // Вестник Московского городского педагогического университета. Серия: Информатика и информатизация образования. 2012. № 1 (23). С. 60-63.
  19. Корнилов В.С. Обратные задачи в содержании обучения прикладной математике // Вестник Российского университета дружбы народов. Серия: Информатизация образования. 2014. № 2. С. 109-118.
  20. Корнилов В.С. Обучение студентов обратным задачам математической физики как фактор формирования фундаментальных знаний по интегральным уравнениям // Бюллетень лаборатории математического, естественнонаучного образования и информатизации. Рецензируемый сборник научных трудов. Самара: Самарский филиал МГПУ, 2015. Т. VI. С. 251-257.
  21. Корнилов В.С. Обучение студентов обратным задачам для дифференциальных уравнений как фактор формирования компетентности в области прикладной математики // Вестник Российского университета дружбы народов. Серия: Информатизация образования. 2015. № 1. С. 63-72.
  22. Корнилов В.С. Реализация научно-образовательного потенциала обучения студентов вузов обратным задачам для дифференциальных уравнений // Казанский педагогический журнал. 2016. № 6. С. 55-59.
  23. Корнилов В.С. Базовые понятия информатики в содержании обучения обратным задачам для дифференциальных уравнений // Вестник Российского университета дружбы народов. Серия: Информатизация образования. 2016. № 1. С. 70-84.
  24. Корнилов В.С. Теория и методика обучения обратным задачам для дифференциальных уравнений: монография. М.: ОнтоПринт, 2017. 500 с.
  25. Корнилов В.С. Формирование фундаментальных знаний по математическому моделированию при обучении обратным задачам для дифференциальных уравнений // Вестник Московского городского педагогического университета. Серия: Информатика и информатизация образования. 2017. № 1 (39). С. 92-99.
  26. Корнилов В.С. Философская составляющая научно-образовательного потенциала обучения обратным задачам математической физики // Вестник Московского городского педагогического университета. Серия: Информатика и информатизация образования. 2018. № 1 (43). С. 59-65.
  27. Корнилов В.С. Формирование у студентов междисциплинарных научных знаний при обучении обратным задачам для дифференциальных уравнений // Вестник Казахского национального педагогического университета имени Абая. Серия: Физико-математические науки. 2018. № 4 (64). С. 46-50.
  28. Кравец А.С. Гуманизация и гуманитаризация высшего образования // Вестник Воронежского государственного университета. Серия: Проблемы высшего образования. 2000. № 1. С. 30-37.
  29. Лаврентьев Г.В. Гуманитаризация высшего математического образования на основе блочно-модульного подхода: дис.. д-ра пед. наук. Барнаул, 2001. 349 c.
  30. Левченко И.В., Корнилов В.С., Беликов В.В. Роль информатики в подготовке специалистов по прикладной математике // Вестник Московского городского педагогического университета. Серия: Информатика и информатизация образования. 2009. № 2 (18). С. 108-112.
  31. Павловский Ю.Н. Имитационное моделирование сложных процессов и систем // Современные проблемы прикладной математики: сб. науч. статей. Вып. 1. М.: МЗ Пресс, 2005. С. 75-98.
  32. Романов В.Г. Обратные задачи для дифференциальных уравнений: спецкурс для студентов НГУ. Новосибирск: НГУ, 1973. 252 с.
  33. Романов В.Г. Обратные задачи математической физики: монография. М.: Наука, 1984. 264 с.
  34. Самарский А.А., Вабишевич П.Н. Численные методы решения обратных задач математической физики: монография. М.: УРСС, 2004. 478 c.
  35. Симонов В.М. Дидактические основы естественнонаучного образования: теория и практика реализации гуманитарной парадигмы: дис.. д-ра пед. наук. Волгоград, 2000. 403 с.
  36. Тимофеев Ю.М., Поляков А.В. Математические аспекты решения обратных задач атмосферной оптики: учебное пособие. СПб.: Изд-во Санкт-Петербургского университета, 2001. 188 с.
  37. Файрушина С.М. Формирование экологической культуры студентов педагогических вузов в процессе изучения естественнонаучных дисциплин: дис.. канд. пед. наук. Казань, 2007. 217 с.
  38. Юрко В.А. Введение в теорию обратных спектральных задач: учебное пособие. М.: Физматлит, 2007. 384 c.

© Корнилов В.С., 2018

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах