Lampenflora as a result of karst cave equipment for excursions

Cover Page

Cite item

Abstract

This review is devoted to the problem of the development of “lampenflora” - phototrophic fouling communities in karst caves’ areas with artificial lighting used for tourism purposes. The experience of domestic and foreign colleagues helps to understand the causes of its occurrence, the conditions for the formation and development of communities; describes the mechanisms of adaptation of individual species and communities to the complex conditions of underground ecosystems. Lampenflora is not typical for the cave environment, and in this regard, the adverse consequences of its presence are found in the form of an impact on the local biota and abiotic parameters of the environment. The review compares lampenflora and natural communities of phototrophs in the entrance zones of caves illuminated by sunlight.

About the authors

Elizaveta K. Pichugina

RUDN University

Author for correspondence.
Email: pichugina94@inbox.ru

postgraduate student of Department of Environmental Safety and Product Quality Management

6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation

Svetlana E. Mazina

RUDN University; Lomonosov Moscow State University; Federal State Unitary Enterprise Research and Technical Center or Radiation-Chemical Safety and Hygiene; Russian State Agrarian Correspondence University; State University of Land Use Planning

Email: conophytum@mail.ru

Associate Professor of Department of Environmental Safety and Product Quality Management of RUDN University; Senior Researcher at the Department of Chemistry, Lomonosov Moscow State University; Senior Researcher at the Federal State Unitary Enterprise Research and Technical Center or Radiation-Chemical Safety and Hygiene; Associate Professor in the Department of Agriculture and Crop Production at the Russian State Agrarian Correspondence University; ; Senior Researcher, Federal State Budgetary Educational Institution of Higher Education “State University of Land Use Planning”

6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation; 1, build. 3, Leninskie Gory, GSP-1, Moscow State University, Faculty of Chemistry, Moscow, 119991, Russian Federation; 40 Schukinskaya St, Moscow, 123182, Russian Federation; 50 Shosse Entuziastov St, Balashikha, Moscow region, 143907, Russian Federation; 15 Kazakov St, Moscow, 105064, Russian Federation

References

  1. Silviu C, Mirea IC, Petculescu A, Arghir RA, Măntoiu DȘ, Kenesz M. Monitoring human impact in show caves. A study of four Romanian caves. Sustainability. 2022;13(4):1619. https://doi.org/10.3390/su13041619
  2. Mammola S, Cardoso P, Culver DC, Deharveng L, Ferreira RL, Fišer C. Scientists' warning on the conservation of subterranean ecosystems. BioScience. 2019;69(8):641-650. https://doi.org/10.1093/biosci/biz064
  3. Culver DC, Pipan T. The biology of caves and other subterranean habitats. Oxford University Press; 2019.
  4. Liu R, Zhang Z, Shen J, Wang Z. Bryophyte diversity in karst sinkholes affected by different degrees of human disturbance. Acta Societatis Botanicorum Poloniae. 2019;88(2). https://doi.org/10.5586/asbp.3620
  5. Gunn J, Hardwick P, Wood PJ. The invertebrate community of the Peak-Speedwell cave system, Derbyshire, England-pressures and considerations for conservation management. Aquatic Conservation: Marine and Freshwater Ecosystems. 2000;10(5):353-369. https://doi.org/10.1002/1099-0755(200009/10)10:5<353::AID-AQC413>3.0.CO;2-S
  6. Hubelova D, Maja J, Kozumplikova A, Schrimpelova K, Hornova H, Janal P. Influence of Human Activity on Surface Water Quality in Moravian karst. Polish Journal of Environmental Studies. 2020;29(5):3153-3162. https://doi.org/10.15244/pjoes/114233
  7. Zhelyazkova V, Hubancheva A, Radoslavov G, Toshkova N, Puechmaille SJ. Did you wash your caving suit? Cavers’ role in the potential spread of Pseudogymnoascus destructans, the causative agent of White-Nose Disease. International Journal of Speleology. 2020;49(2):7. https://doi.org/10.5038/1827-806X.49.2.2326
  8. Feinberg JM, Hobart KK. Attraction in the dark: the magnetism of speleothems. Elements: An International Magazine of Mineralogy, Geochemistry, and Petrology. 2021;17(2):113-118. https://doi.org/10.2138/gselements.17.2.113
  9. Jaqueto P, Ricardo I, Trindade F, Feinberg JM, Carmo J, Novello VF, Stríkis NM. Magnetic mineralogy of speleothems from tropical-subtropical sites of South America. Frontiers in Earth Science. 2021;9:278. https://doi.org/10.3389/feart.2021.634482
  10. Mulec J, Glažar S. First results on use of a hydrogen peroxide solution in Postojnska Jama (Slovenia) to remove lampenflora. Proceedings of the 6th ISCA Congress, SNC of Slovak Republic, Slovak Caves Administration. 2011.
  11. Burgoyne J, Crepeau R, Jensen J, Smith H, Baker G, Leavitt SD. Lampenflora in a Show Cave in the Great Basin Is Distinct from Communities on Naturally Lit Rock Surfaces in Nearby Wild Caves. Microorganisms. 2021;9(6):1188. https://doi.org/10.3390/microorganisms9061188
  12. Cigna AA. The problem of lampenflora in show caves. Acta Carsologica Slovaca. 2012;50(1):5-10.
  13. Mulec J. Lampenflora. Encyclopedia of caves. Academic Press Publ.; 2019.
  14. Mazina SE, Koncevova AA. Peculiarities of the formation of lampflora in the excursion caves of the Crimea. Geoecology and nature management: topical issues of science, practice and education. 2018. p. 205-207. (In Russ.)
  15. Havlena Z, Kieft TL, Veni G, Horrocks RD, Jones DS. Lighting effects on the development and diversity of photosynthetic biofilm communities in Carlsbad Cavern, New Mexico. Applied and Environmental Microbiology. 2021;87(6):e02695-20. https://doi.org/10.1128/AEM.02695-20
  16. Czerwik-Marcinkowska J. Observations on aerophytic cyanobacteria and algae from ten caves in the Ojców National Park. Acta Agrobotanica. 2013;66(1):39-51.
  17. Mazina SE, Kozlova EV. Lampenflora of Lipska Cave, Montenegro. Journal of Cave and Karst Science. 2018;45(3):128-132.
  18. Nikolić N, Zarubica N, Gavrilović B, Predojević D, Trbojević I, Simić GS. Lampenflora and the entrance biofilm in two show caves: Comparison of microbial community, environmental, and biofilm parameters. Journal of Cave and Karst Studies. 2020;82(2):69-81. https://doi.org/10.4311/2018EX0124
  19. Mulec J, Vaupotič J, Walochnik J. Prokaryotic and eukaryotic airborne microorganisms as tracers of microclimatic changes in the underground (Postojna Cave, Slovenia). Microbial ecology. 2012;64(3):654-667. https://doi.org/10.1007/s00248-012-0059-1
  20. Šebela S, Baker G, Luke B. Cave Temperature and Management Implications in Lehman Caves, Great Basin National Park, USA. Geoheritage. 2019;11(3):1163-1175. https://doi.org/10.1007/s12371-019-00367-0
  21. Bruno L, Valle V. Effect of white and monochromatic lights on cyanobacteria and biofilms from Roman Catacombs. International Biodeterioration & Biodegradation. 2017;123:286-295. https://doi.org/10.1016/j.ibiod.2017.07.013
  22. Trinh DA, Trinh QH, Tran N, Guinea JG, Mattey D. Eco-friendly remediation of lampenflora on speleothems in tropical karst caves. Journal of Cave & Karst Studies. 2018;80(1):1-12. https://doi.org/10.4311/2017ES0101
  23. Estevez CB, Merino LM, Almudena de la Losa Román, Durán-Valsero JJ. The lampenflora in show caves and its treatment: an emerging ecological problem. International Journal of Speleology. 2019;48(3):249-277. https://doi.org/10.5038/1827-806X.48.3.2263
  24. Cao W, Xiong Y, Zhao D, Tan H, Qu J. Bryophytes and the symbiotic microorganisms, the pioneers of vegetation restoration in karst rocky desertification areas in southwestern China. Applied microbiology and biotechnology. 2020;104(2):873-891. https://doi.org/10.1007/s00253-019-10235-0
  25. Wasti IG, Anwarali-Khan FA, Bernard H, Hassan NH, Fayle T, Sathiya-Seelan JS. Fungal communities in bat guano, speleothem surfaces, and cavern water in Madai cave, Northern Borneo (Malaysia). Mycology. 2021;12(3):188-202. https://doi.org/10.1080/21501203.2021.1877204
  26. Popkova AV, Mazina SE. Microbiota of Otap Head Cave. Environmental Research, Engineering and Management. 2019;75(3):71-82. https://doi.org/10.5755/j01.erem.75.3.21106
  27. Grobbelaar JU. Lithophytic algae: A major threat to the karst formation of show caves. Journal of Applied Phycology. 2000;12(3-5):309-315. https://doi.org/10.1023/A:1008172227611
  28. Büdel B, Bendix J, Bicker FR, Allan Green TG. Dewfall as a water source frequently activates the endolithic cyanobacterial communities in the granites of Taylor Valley, Antarctica 1. Journal of Phycology. 2008;44(6):1415-1424. https://doi.org/10.1111/j.1529-8817.2008.00608.x
  29. Albertano P. Cyanobacterial biofilms in monuments and caves. Ecology of cyanobacteria II. Springer, Dordrecht; 2012. https://doi.org/10.1007/978-94-007-3855-3_11
  30. Piano E, Nicolosi G, Isaia M. Modulating lighting regime favours a sustainable use of show caves: A case study in NW-Italy. Journal for Nature Conservation. 2021:126075. https://doi.org/10.1016/j.jnc.2021.126075
  31. Jurado V, Rosal Y, Gonzalez-Pimentel JL, Hermosin B, Saiz-Jimenez C. Biological control of phototrophic biofilms in a show cave: The case of Nerja Cave. Applied Sciences. 2020;10(10):3448. https://doi.org/10.3390/app10103448
  32. Turrini P, Tescari M, Visaggio D, Pirolo M, Lugli GA, Ventura M. The microbial community of a biofilm lining the wall of a pristine cave in Western New Guinea. Microbiological Research. 2020;241:126584. https://doi.org/10.1016/j.micres.2020.126584
  33. Dominguez-Moñino I, Jurado V, Rogerio-Candelera MA, Hermosin B, Saiz-Jimenez C. Airborne fungi in show caves from Southern Spain. Applied Sciences. 2021;11(11):5027. https://doi.org/10.3390/app11115027
  34. Vanderwolf KJ, McAlpine DF. Hibernacula microclimate and declines in overwintering bats during an outbreak of white-nose syndrome near the northern range limit of infection in North America. Ecology and Evolution. 2021;11(5):2273-2288. https://doi.org/10.1002/ece3.7195
  35. Jurado V, Rosal YD, Liñan C, Martin-Pozas T, Gonzalez-Pimentel JL, Saiz-Jimenez C. Diversity and seasonal dynamics of airborne fungi in Nerja Cave, Spain. Applied Sciences. 2021;11(13):6236. https://doi.org/10.3390/app11136236
  36. Simon KS, Benfield FE. Leaf and wood breakdown in cave streams. Journal of the North American Benthological Society. 2001;20(4):550-563. https://doi.org/10.2307/1468087]
  37. Popović SS. Petrović KM, Trnavac-Bogdanović DS, Milošević DL, Graovac AD, Trbojević IS. Cyanobacteria and algae from biofilm at the entrance zone of Petnica Cave. Zbornik Matice srpske za prirodne nauke. 2021;(140):71-84. https://doi.org/10.2298/ZMSPN2140071P
  38. Lamprinou V, Danielidis DB, Economou-Amilli A, Pantazidou A. Distribution survey of Cyanobacteria in three Greek caves of Peloponnese. International Journal of Speleology. 2012;41(2):267-272. http://dx.doi.org/10.5038/1827-806X.41.2.12
  39. Keshari N, Adhikary SP. Characterization of cyanobacteria isolated from biofilms on stone monuments at Santiniketan, India. Biofouling. 2013;29(5):525-536. https://doi.org/10.1080/08927014.2013.794224
  40. Mammola S, Isaia M. Day-night and seasonal variations of a subterranean invertebrate community in the twilight zone. Subterranean Biology. 2018;27:31-51. https://doi.org/10.3897/subtbiol.27.28909
  41. Prous X, Ferreira RL, Jacobi CM. The entrance as a complex ecotone in a Neotropical cave. International Journal of Speleology. 2015;44(2):177-189. http://dx.doi.org/10.5038/1827-806X.44.2.7
  42. Alaoui-Sosse B, Ozaki S, Barriquand L, Luca DD, Cennamo P, Vallot B. Does Microbial Diversity of Cave Ecosystems Differ from Outside? The Case of the Azé Show Cave (France). 2021. https://doi.org/10.21203/rs.3.rs-471958/v1
  43. Roldán M, Hernández-Mariné M. Exploring the secrets of the three-dimensional architecture of phototrohic biofilms in caves. International Journal of Speleology. 2009;38(1):41-53. http://dx.doi.org/10.5038/1827-806X.38.1.5
  44. Behrendt L, Trampe EL, Nord NB, Nguyen J, Kühl M, Lonco D. Life in the dark: far-red absorbing cyanobacteria extend photic zones deep into terrestrial caves. Environmental microbiology. 2020;22(3):952-963. https://doi.org/10.1111/1462-2920.14774
  45. Abdullin ShR, Bagmet VB. Myxotrophy of cyanobacteria and algae under cave conditions. Journal of General Biology. 2016;77(1):54-62. (In Russ.)
  46. Mulec J, Kosi G. Lampenflora algae and methods of growth control. Journal of cave and karst studies. 2009;71(2):109-115.
  47. Borderie F, Tête N, Cailhol D, Alaoui-Sehmer L, Faisl Bousta, Dominique Rieffel. Factors driving epilithic algal colonization in show caves and new insights into combating biofilm development with UV-C treatments. Science of the Total Environment. 2014;484:43-52. https://doi.org/10.1016/j.scitotenv.2014.03.043
  48. Benavente J, Vadillo I, Carrasco F, Soler A, Liñán C, Moral F. Air carbon dioxide contents in the vadose zone of a Mediterranean karst. Vadose Zone Journal. 2010;9(1):126-136. https://doi.org/10.2136/vzj2009.0027
  49. Novas N, Gazquez JA, MacLennan JA, García RM, Fernández-Ros M, Manzano-Agugliaro F. A real-time underground environment monitoring system for sustainable tourism of caves. Journal of Cleaner Production. 2017;142(4):2707-2721. https://doi.org/10.1016/j.jclepro.2016.11.005
  50. Guirado E, Ramos-López D, Maldonado AD, Moreno-Balcazar JJ, Calaforra J. Modeling carbon dioxide for show cave conservation. Journal for nature conservation. 2019;49:76-84. https://doi.org/10.1016/j.jnc.2019.03.002
  51. Mazina SE, Popkova AV. Distribution of photosynthetic species in grotto type caves of different regions. RUDN Journal of Ecology and Life Safety. 2020;28(3):275-284.
  52. Maciejewska M, Adam D, Naômé A, Martinet L, Tenconi E, Całusińska M. Assessment of the potential role of Streptomyces in cave moonmilk formation. Frontiers in microbiology. 2017;8:1181. https://doi.org/10.3389/fmicb.2017.01181
  53. Wiseschart A, Mhuantong W, Tangphatsornruang S, Chantasingh D, Pootanakit K. Shotgun metagenomic sequencing from Manao-Pee cave, Thailand, reveals insight into the microbial community structure and its metabolic potential. BMC microbiology. 2019;19(1-14) https://doi.org/10.1186/s12866-019-1521-8
  54. Albertano P, Moscone D, Palleschi G, Hermosin B, Saiz-Jimenez C, Sanchez-Moral S. Cyanobacteria attack rocks (CATS): control and preventive strategies to avoid damage caused by cyanobacteria and associated microorganisms in Roman hypogean monuments. Molecular biology and cultural heritage. 2003.
  55. De Luca D, Caputo P, Perfetto T, Cennamo P. Characterisation of Environmental Biofilms Colonising Wall Paintings of the Fornelle Cave in the Archaeological Site of Cales. International journal of environmental research and public health. 2021;18(15):8048. https://doi.org/10.3390/ijerph18158048
  56. Slađana P, Nataša N, Dragana P, Olga J, Tonči R, Ana A. Endolithic phototrophs: Examples from cave-like environments. Kragujevac Journal of Science. 2021;(43):123-137. https://doi.org/10.5937/KgJSci2143123P
  57. Xu C, Zhao L, Du W, Zhang S, Wu Y, Zhou F. Food sources and trophic levels of terrestrial cave fauna in Yuping Town, Libo County, Guizhou Province. Biodiversity Science. 2021;29(8):1108-1119. https://doi.org/10.17520/biods.2021086
  58. Kozlova EV, Mazina SE, Vladimir Pešić. Biodiversity of phototrophs in illuminated entrance zones of seven caves in Montenegro. Ecologica Montenegrina. 2019;20:24-39. https://doi.org/10.37828/em.2019.20.3
  59. Kozlova EV, Mazina SE. Mosaicity of photic zones’ phytocenoses on the example of caves of Montenegro. Problems of Regional Ecology. 2020;(1):27-33. (In Russ.)
  60. Ren H, Wang F, Ye W, Zhang Q, Han T, Huang Y. Bryophyte diversity is related to vascular plant diversity and microhabitat under disturbance in karst caves. Ecological Indicators. 2021;120:106947. https://doi.org/10.1016/j.ecolind.2020.106947
  61. Hajong P, Wanlambok Sanglyne M, Dirborne CM, Koch U, Ramanujam P. Diversity and distribution of algae in cave ecosystems of Meghalaya: An overview. International Journal of Botany Studies. 2021;6(2):589-596
  62. Popović S, Krizmanić J, Vidaković D, Jakovljević O, Trbojević I, Predojević D. Seasonal dynamics of cyanobacteria and algae in biofilm from the entrance of two caves. Geomicrobiology Journal. 2020;37(4):315-326. https://doi.org/10.1080/01490451.2019.1700322
  63. Andreeva VL, Kovalevskaya OM. Analytical review of the history of ecotone studies. Bulletin of Berdyansk State Pedagogical University Series. 2017;3(1):46–53. (In Russ.)
  64. Moseley M. Are all caves ecotones. Cave and karst science. 2009;36 (2):53-58.
  65. Smith AJ, Goetz EM. Climate change drives increased directional movement of landscape ecotones. Landscape Ecology. 2021;(36):3105-3116. https://doi.org/10.1007/s10980-021-01314-7
  66. Li Y, Li M, Ding Z. Study on methodology of assessing synergy between conservation and development of karst protected area in the case of the Diehong Bridge Scenic Area of Jiuxiang Gorge Cave Geopark, Yunnan, China. Environment, Development and Sustainability. 2022;(24):5867-5886. https://doi.org/10.1007/s10668-021-01688-3

Copyright (c) 2022 Pichugina E.K., Mazina S.E.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies