A MODERN VIEW ON THE PROBLEM OF TREATMENT OF UROTHELIAL CANCER

Cover Page

Abstract


Urothelial cancer (UC) is one of the leading onco-urological diseases. The lack of clinical manifestations of the disease at earlier stages does not allow assigning an adequate therapy in good time. Currently they extensively use conventional methods of treatment, which are constantly improving. Nevertheless, such methods are not always sufficiently effective: they neither always avert recurring, nor ensure sufficient remission and longevity of a patient. Identification of new trends in the early diagnostics of not only cancers but also pre-cancers plays an important role in forming conceptually new approaches to medical treatments. Molecular genetic features of UC have shown a significant chromosomal mutational variability, the dependence of genetic variations on the tumor invasion level, as well as its high level of immunizing power. Successes achieved in understanding the processes taking place not only in the tumor microenvironment but also in tumors have enabled creating fundamentally new anticancer drugs and achieving a significant progress in treating UC. This article presents a new classification of UCs based on immune histochemical data and molecular genetic characteristics of tumors, presents a cluster analysis of various types of UCs, recites present-day data on the disease incidence, analyses up-to-date conventional and innovative methods of UC treatment including non-specific and specific immunotherapy, describes the underlying mechanisms preventing tumors to evade immune surveillance, shows the role of immune checkpoints and their inhibitors, target and cytokine therapies, tumor vaccines, cell-based therapies, combined and integral methods of noninvasive and metastatic UC, as well as describes the results of clinical trials when using various methods of tumor treatments.


About the authors

S V Salnikova

Peoples’ Friendship University of Russia; Istitute of Immunophysiology

Author for correspondence.
Email: drsalnikova@mail.ru
8/2, Miklukho-Maklaya Street, 117198, Moscow, Russia

PhD, Associate Professor Department of Immunology & Allergology, Medical Institute of the Peoples’ Friendship University of Russia

T A Slavyanskaya

Peoples’ Friendship University of Russia; Istitute of Immunophysiology

Email: drsalnikova@mail.ru

References

  1. Siegel R.L., Miller K.D., Jemal A. Cancer statistics. CA Cancer J. Clin. 2017. V. 67. Р. 7—30.
  2. Sepiashvili R.I. Physiology of the Immune System. Moscow: Medicine-Health. 2015. 327 p. (translation)
  3. Sepiashvili R.I., Balmasova I.P., Slavyanskaya T.A. Current Concept of Immune Rehabilitation. Int. J. on Immunoreh. 1997. No 6. P. 5. (translation)
  4. Slavyanskaya Т.А., Sepiashvili R.I. The Role of Cytokines in Immunopathology. Allergology & Immunology. 2004. V. 5. No 1. P. 42. (translation)
  5. Sepiashvili R.I., Belyayev А.М. Cancer Immunotherapy: Challenges and Opportunities. Allergology & Immunology. 2015. V. 16. No 4. P. 354—357. (translation)
  6. Salnikova S.V., Slavyanskaya Т.А. et al. Innovations and Technologies in Bladder Cancer Therapies. Allergology & Immunology. 2016. V. 17. No 1. P. 21—26. (translation)
  7. Salnikova S.V., Slavyanskaya Т.А. et al. Current Approaches and Achievements in Treatment of Bladder Cancers. Allergology & Immunology. 2016. V. 17. No 1. P. 50—51. (translation)
  8. Kudryavtseva I.V., Slavyanskaya Т.А., Trunov A.N., Trunova L.А. Levels of Autoantibodies Targeting Nuclear DNA, Lactoferrin and Some Immunological Indicators in Rheumatoid Arthritis Patients. Bulletin of the Siberian Branch of the Russian Academy of Medical Sciences. 1999. V. 19. No 3—4. p. 66—68. (translation)
  9. Slavyanskaya Т.А., Sepiashvili R.I., Vishnyakov M.N., Chikhladze M.V. Immune Monitoring of Chronic Bronchitis Patients in the Course of Rehabilitation. Int. J. on Immunoreh. 1999. No 11. P. 70. (translation)
  10. Slavyanskaya Т.А., Avdonkina N.А., Salnikova S.V. Optimization of Conditions for Obtaining Teleorganic Primary Culture of Urothelial Carcinoma Cells. Allergology & Immunology. 2016. V. 17. No 3. P. 176—179. (translation)
  11. Balduyeva I.А., Novik А.V., Karitsky А.P., Kulyova S.А., Nekhayeva T.L., Danilova A.B., Protsenko S.А., Semyonova A.I., Komarov Y.I., Pipia N.P., Slavyanskaya Т.А., Avdonkina N.А., Salnikova S.V., Belyayev А.М., Sepiashvili R.I. Cancer Immunotherapy: Current Status of the Problem. Allergology & Immunology. 2015. V. 16. No 4. P. 354. (translation)
  12. Smirnova Т.А., Ponomaryova Y.P., Khanferyan R.А., Kolesnikov V.V. Experience in Application of Roncoleukinum When Treating Helicobacter Pylori Associated Gastric Ulcers in the Outpatient Setting. Therapeutic Archive. 2009. V. 81. No 2. p. 30—35. (translation)
  13. Slavyanskaya Т.А., Salnikova S.V. et al. Tumour Vaccines: Potential Targets, Current Developments and Prospects of Using. Russian Journal of Immunology. 2016. V. 10 (19). No 2 (1). P. 498—500. (translation)
  14. Slavyanskaya Т.А., Salnikova S.V., Sepiashvili R.I. Chromosome aberrations and the expression of tumor-associated antigens by tumor cultures of bladder cancer with long-term cultivation. Allergology & Immunology. 2016. V. 17. No 4. P. 257—258. (translation)
  15. Salnikova S.V., Slavyanskaya T.A. Comparative characteristics of the level of expression of tumor-associated antigens in various forms of invasion of bladder cancer. Int. Proc. Filodiritto “Allergy, Asthma, COPD, Immunophysiology & Immunorehabilitology: Innovative Technologies”. Ed. R. Sepiashvili. 2017. P. 273—279.
  16. Slavyanskaya T., Salnikova S. Chromosome aberrations and the expression of tumor-associated antigens by tumor cultures of bladder cancer with long-term cultivation. Int. Proc. Filodiritto “Allergy, Asthma, COPD, Immunophysiology & Immunorehabilitology: Innovative Technologies”. Ed. R. Sepiashvili. 2017. P. 265—272.
  17. Slavyanskaya T., Avdonkina N., Salnikova S., Sepiashvili R. Cytogenetic analysis of tumor cultures for preparation of personified antitumor vaccines against bladder cancer. Allergy. 2017. August. 72 (Suppl.) S103. Ref. 0473: 329.
  18. Slavyanskaya T., Salnikova S. Analysis of expression of cancer-testicular antigens on the tumor cell cultures of bladder cancer. Int. Proc. Filodiritto “Allergy, Asthma, COPD, Immunophysiology & Immunorehabilitology: Innovative Technologies”. Ed. R. Sepiashvili. 2017. Р. 257—264.
  19. Slavyanskaya T., Salnikova S., Sepiashvili R., et al. Targeted therapy of patients with urothelial carcinoma. Int. Proc. Filodiritto Allergy, Asthma & Immunophysiology: Innovative Technologies. Ed. By R. Sepiashvili. 2016. Р. 281—288.
  20. Salnikova S.V., Slavyanskaya T.A., Ivanchenko L.P., Sepiashvili R.I. The advantages of the combined modality therapy of muscular non-invasive bladder cancer. Int. J. on Immunoreh. 2016. Dec. V. 18. № 2. Р. 129—130.
  21. Slavyanskaya T.A., Salnikova S.V., et al. Targeted therapy of patients with urothelial carcinoma. Int. J. Immunoreh. 2016. V. 18. № 1. Р. 55—56.
  22. Salnikova S.V., Slavyanskaya Т.А. et al. New Approaches in Bladder Cancer Treatment. Int. J. Immunoreh. 2015. V. 17. No 2. P. 87. (translation)
  23. Kaprin A.D., Starinsky V.V., Petrova G.V. Status of Cancer Care Facilities in Russia in 2017. Moscow: Moscow P.A. Hertzen Scientific and Research Oncological Institute, Branch of ‘National Medical Radiological Research Centre’ Federal State-Budgeted Hospital, Russian Ministry of Health. 2018. 236 p. (translation)
  24. Sjödahl G., Lövgren K., Lauss M., Patschan O., Gudjonsson S., Chebil G., Aine M., Eriksson P., M°ansson W., Lindgren D., Fernö M., Liedberg F., Höglund M. Toward a molecular pathologic classification of urothelial carcinoma. Am. J. Pathol. 2013. V. 183. № 3. Р. 681—91.
  25. Slavyanskaya T.A., Salnikova S.V., Sepiashvili R.I. Chromosome aberrations and the expression of tumor-associated antigens by tumor cultures of bladder cancer with long-term cultivation. Int. J. Immunoreh. 2016. V. 18. № 2. Р. 128—129.
  26. Salnikova S.V., Slavyanskaya T.A. Comparative characteristics of the level of expression of tumor-associated antigens in various forms of invasion of bladder cancer. Int. J. Immunoreh. 2016. V. 18 (2). P. 129. (translation)
  27. Sobin L.K., Gospodarovich М.K., Vittekind K. TNM: Classification od Malignant Tumours. Translated from English under the editorship of N.N. Blinov. SPb., Aesculapius. 6th edition. 2003. 244 p.
  28. Sjödahl G., Lövgren K., Lauss M., Patschan O., Gudjonsson S., Chebil G., Aine M., Eriksson P., M°ansson W., Lindgren D., Fernö M., Liedberg F., Höglund M. Toward a molecular pathologic classification of urothelial carcinoma. Am. J. Pathol 2013. V. 183. № 3. Р. 681—691.
  29. Choi W., Porten S., Kim S., Willis D., Plimack E.R., Hoffman-Censits J., Roth B., Cheng T., Tran M., Lee I.L., Melquist J., Bondaruk J., Majewski T., Zhang S., Pretzsch S., Baggerly K., Siefker-Radtke A., Czerniak B., Dinney C.P., McConkey D.J. Identification of distinct basal and luminal subtypes of muscle-invasive bladder cancer with different sensitivities to frontline chemotherapy. Cancer Cell. 2014. V. 25. № 2. Р. 152—65.
  30. Kumari N., Dubey U.S., Agrawal U. Evolution of Classification of Bladder (Urothelial) Cancer. Bladder Cancer Classification. NJIRM 2015; Vol. 6 № 6. Nov — Dec. Р. 89—94.
  31. Skryabin N.А., Kashevarova А.А., Denisov Y.V., Lebedev I.N. DNA Methylation Research Methods: Opportunities for Using in Oncology. Siberian Journal of Oncology. 2003. No 6. P. 65—69. (translation)
  32. Xylinas E., Cha E., Khani F., Kluth L., Rieken M., Volkmer B., Hautmann R., Küfer R., Chen Y., Zerbib M., Rubin M., Scherr D., Shariat S., Robinson B. Association of oncofetal protein expression with clinical outcomes in patients with urothelial carcinoma of the bladder. J. Urol. 2014. Mar. V. 191. № 3. Р. 830—841.
  33. Hoadley K.A., Yau C., Wolf D.M., Cherniack A.D., Tamborero D., Ng S., Leiserson M.D., Niu B., McLellan M.D., Uzunangelov V., Zhang J., Kandoth C., Akbani R., Shen H., Omberg L., Chu A., Margolin A.A., Van’t Veer L.J., Lopez-Bigas N., Laird P.W., Raphael B.J., Ding L., Robertson A.G., Byers L.A., Mills G.B., Weinstein J.N., Van Waes C., Chen Z., Collisson E.A. Cancer Genome Atlas Research Network, Benz C.C., Perou C.M., Stuart J.M. Multiplatform analysis of 12 cancer types reveals molecular classification within and across tissues of origin. Cell. 2014. Aug 14. V. 158. № 4. Р. 929—944.
  34. Weinstein JN, Akbani R, Broom BM, Wang W. et al. Comprehensive molecular characterization of urothelial bladder carcinoma. Cancer Genome Atlas Research Network. Nature. 2014 Mar 20. V 507. № 7492. P. 315—322.
  35. Santos C, Sanz-Pamplona R, Nadal E, Grasselli J, Pernas S, Dienstmann R, Moreno V, Tabernero J, Salazar R. Intrinsic cancer subtypes-next steps into personalized medicine. Cell Oncol (Dordr). 2015 Feb. V. 38. № 1. P. 3—16.
  36. Ryan M.J., Hoffman-Censits J., Gomella L.G. Basic Concepts in Bladder Cancer Immunotherapy. AJHO. 2017. V. 13. № 9. Р. 12—17.
  37. Gallyamov E., Sergeev V., Shirokorad V., Volodin D., Ledenev S., Popov I.S., Orlov T., Topuzov T., Meschankin А., Novikov A., Sanzharov A., Bolgov E., Mikhaylikov T. Laparoscopic retroperitoneal lymphadenectomy in technical aspects. 25-th World Congress on Videourology & Advances in Clinical Urology. 2014 June. Sofia. Bulgaria. Book of abstracts. Р. 74.
  38. Ryan J.M., Hoffman-Censite J., Gomella L.G. Basic concepts in immunotherapy for bladder cancer. AJHO. 2017. V. 13. № 9. Р.12—17.
  39. Kiselyov O.I., Bendzko P.G., Shkolnikova L.L., Khanson K.P., Kiselyov V.I. Virus and Tumour Antigens, Their Use in Cancer Vaccine Construction. Academic Medical Journal. 2002. V. 2. No 1. P. 1933. (translation)
  40. Sternberg C.N., Donat S.M., Bellmunt J., Millikan R.E., Stadler W., De Mulder P., Sherif A., von der Maase H., Tsukamoto T., Soloway M.S. Chemotherapy for bladder cancer: treatment guidelines for neoadjuvant chemotherapy, bladder preservation, adjuvant chemotherapy, and metastatic cancer. Urology. 2007. Jan. V. 69. (1 Suppl). Р. 62—79.
  41. Askeland E.J. et al. Bladder Cancer Immunotherapy: BCG and Beyond. Advances in Urology, V. 2012. Article ID 181987
  42. Danilchenko D.I., Gerhard S, Jung K., König F., Waldman А., Al-Shukri S., Löning S.А. Effect of Neoplastic Process Activity on the Level of Matrix-Metalloproteinases 2 and 9 in Urine at Bladder Cancer. Experimental Oncology. 2002. V. 24. No 3. P. 203—207. (translation)
  43. Fuge O., Vasdev N., Allchorne P., Green J.S.A. Immunotherapy for bladder cancer. Research and Reports in Urology. 2015. № 7. Р. 56.
  44. Burger M., Thiounn N., Denzinger S., Kondas J., et al., The application of adjuvant autologous antravesical macrophage cell therapy vs. BCG in non-muscle invasive bladder cancer: a multicenter, randomized trial. J. Transl Med. 2010. Jun. V. 8. № 8. Р. 54.
  45. Lima L., Oliveira D., Tavares A., Amaro T., Cruz R., Oliveira M.J., et al. The predominance of M2-polarized macrophages in the stroma of low-hypoxic bladder tumors is associated with BCG immunotherapy failure. Urol Oncol. 2014. № 32. Р. 449—57.
  46. Нао М., Zheng O., Нои К., Wang Ј., Chen Х., Lu Х., Во Ј, Хi С., Shen К., Wang Ј. Role 0f chemokine receptor CXCR7 in bladder cancer progression. Н Biochem Pharmacol. 2012. Jul. 15; Epub 2012 Apr 13. Biochem Pharmacol. 2012 Jul doi: 10.1016/j.bcp.2012.04.007. Epub 2012 Apr 13.
  47. LaRue H., Ayari C., Bergeron A., Fradet Y. Toll-like receptors in urothelial cells-targets for cancer immunotherapy. Nat Rev Urol. 2013. V. 10. № 9. Р. 537—45.
  48. Gong J., Chehrazi-Raffle A. Development of PD-1 and PD-L1 inhibitors as a form of cancer immunotherapy: a comprehensive review of registration trials and future considerations. Journal for Immunotherapy of Cancer. 2018. № 6. Р. 8.
  49. O’Donnell, P. H., Grivas, P., Balar, A. V., et al. First-line Pembrolizumab in cisplatin ineligible advanced urothelial cancer (KEYNOTE-052). A multicentre, single-arm, phase 2 study. Lancet Oncol. 2017. V. 18. № 11. Р. 1483—1492.
  50. Apolo, A. B., Infante, J. R., Balmanoukian, A., Patel, et al., Avelumab, an anti-programmed death-ligand 1 antibody, in patients with refractory metastatic urothelial carcinoma: results from a multicenter, phase Ib study. Journal of Clinical Oncology. 2017. V. 35. P. 2117—2124.
  51. Powles, T., O’Donnell, P. H., Massard, C., Arkenau, et al. Efficacy and safety of durvalumab in locally advanced or metastatic urothelial carcinoma: Updated results from a phase 1/2 open-label study. JAMA Oncology. 2017. 3(9):e172411. doi: 10.1001 jamaoncol.2017.2411.
  52. Dong H., Markovic S.N. The basics of cancer immunotherary. Springer Nature. 2018. 160 p.
  53. Sharma P., Retz M., Seifker-Radtke A., et al. Nivolumab in metastatic urothelial carcinoma after platinum therapy (Check-Mate 275): a multicentre, single-arm, phase 2 trial. Lancet Oncol. 2017. V. 18. № 3. Р.312—22.
  54. Kavecansky J., Pavlick A.C. Beyond Checkpoint Inhibitors: The Next Generation of Immunotherapy in Oncolog. AJHO. 2017. V. 13. № 2. Р. 9—20.
  55. Larkin J., Chiarion-Sileni V., Gonzalez R., Grob J.J., Cowey C.L., Lao C.D., et al. Combined Nivolumab and Ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015. № 373. Р. 23—34.
  56. Postow M.A., Chesney J., Pavlick A.C., Robert C., Grossmann K., McDermott D., et al. Nivolumab and Ipilimumab versus Ipilimumab in untreated melanoma. N Engl J Med. 2015. № 372. Р. 2006—17.
  57. Wu P., Wu D., Li L., Chai Y., Huang J. PD-L1 and Survival in Solid Tumors: A Meta-Analysis. Soutto M. ed. PLoS ONE. 2015. 10(6): e0131403.
  58. Sturgill E.R., Redmond W.L. TNFR Agonists: A Review of Current Biologics Targeting OX40, 4-1BB, CD27, and GITR. AJHO. 2017. V. 13. № 11. Р. 4—15.
  59. Bellmunt J., de Wit R., Vaughn D.J. et al. KEYNOTE-045 Investigators. Pembrolizumab as second-line therapy for advanced urothelial carcinoma. N Engl J Med. 2017. V. 376. № 11. Р. 1015—26.
  60. Diesendruck Y., Benhar I. Novel immune check point inhibiting antibodies in cancer therapy-opportunities and challenges. Drug Resist. Updat. 2017. № 30. Р. 39—47.
  61. Camisaschi C., Vallacchi V., Vergani E. et al. Targeting immune regulatory networks to counteract immune suppression in cancer. Vaccines (Basel). 2016. V. 4. № 4. Р. 38.
  62. Dominguez G., Condamine T.C., Mony S. et al. Selective targeting of myeloid-derived suppressor cells in cancer patients using DS-8273a, an agonistic TRAIL-R2 antibody. Clin. Cancer Res. 2017. V. 23. № 12. Р. 2942—50.
  63. Ling Z.Q., Li P., Ge M.H. et al. Hypermethylation-modulated downregulation of CDH1 expression contributes to the progression of esophageal cancer. Int. J. Mol. Med. 2011. № 27. Р. 625—35.
  64. Glushankova N.А., Zhitnyak I.Y., Ayollo D.V., Rubtsova S.N. The Role of E-Cahedrin in Neoplastic Evolution of Epithelial Cells. Successes of Molecular Oncology. 2014. No 1. P. 12—17. (translation)
  65. Ata R., Antonescu C.N. Integrins and cell metabolism: an intimate relationship impacting cancer. Int J Mol Sci. 2017 Jan; 18(1): 189.
  66. Hadley G.A, Higgins J.M. Integrin αEβ7: molecular features and functional significance in the immune system. Adv Exp Med Biol. 2014. 819. P. 97—110.
  67. Takimoto C. Forty Seven, Inc. Trial of Hu5F9-G4 in combination with cetuximab in patients with solid tumors and advanced colorectal cancer (NCT02953782). BioPortfolio: 2016-11-04T08: 38: 21-0400.
  68. Hersey P., Sosman J., O’Day S. et al. Etaracizumab Melanoma Study Group. A randomized phase 2 study of etaracizumab, a monoclonal antibody against integrin alpha(v)beta(3), + or – dacarbazine in patients with stage IV metastatic melanoma. Cancer. 2010. V. 116. № 6. Р. 1526—34.
  69. Stanley E.R., Chitu V. CSF-1 receptor signaling in myeloid cells. Cold Spring Harb Perspect Biol. 2014. V. 6. Р. 1—21.
  70. Tesaro A. Рhase I study of TSR-022, an anti-TIM-3 monoclonal antibody, in patients with advanced solid tumors (NCT02817633). BioPortfolio: 2016-06-29T20:53:21-0400.
  71. Haji-Fatahaliha M., Hosseini M., Akbarian A., Sadreddini S., Jadidi-Niaragh F., Yousefi M.CAR-modified T-cell therapy for cancer: an updated review. Artificial cells, nanomedicine, and biotechnology. 2015. P. 1—11.
  72. Rosenberg S.A., Restifo N.P. Adoptive cell transfer as personalized immunotherapy for human cancer. Science (New York, N.Y.). 2015. V. 348. № 6230. P. 62—68.
  73. Kochenderfer J.N., Dudley M.E., Kassim S.H., Somerville R.P., et al., Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. Journal of clinical oncology: official journal of the American Society of Clinical Oncology. 2015. V. 33. № 6. P. 540—49.
  74. Dai H., Wang Y., Lu X., Han W. Chimeric Antigen Receptors Modified T-Cells for Cancer Therapy. Journal of the National Cancer Institute. 2016. V. 108. № 7. djv439.
  75. Melero I., Gaudernack G., Gerritsen W., Huber C., Parmiani G., Scholl S. et al. Therapeutic vaccines for cancer: an overview of clinical trials. Nat Rev Clin Oncol. 2014. № 11. Р. 509—24.
  76. Eriksson E., Milenova I., Wenthe J. et al. Shaping the tumor stroma and sparking immune activation by CD40 and 4-1BB signaling induced by an armed oncolytic virus. Clin Cancer Res. 2017. V. 23. № 19. Р. 5846—57.
  77. Matsumoto K., Noguchi M., Satoh T. et al. A phase I study of personalized peptide vaccination for advanced urothelial carcinoma patients who failed treatment with methotrexate, vinblastine, adriamycin and cisplatin. BJU Int., 2017. P. 1464—70.
  78. Keehn A., Gartrell B., Schoenberg M.P. Vesigenurtacel-L (HS-410) in the management of high-grade nonmuscle invasive bladder cancer. Future Oncology. 2016. V. 12. № 23. Р. 2673—82.
  79. Lesterhuis W.J., Schreibelt G., Scharenborg N.M. et al. Wild-type and modified gp100 peptide-pulsed dendritic cell vaccination of advanced melanoma patients can lead to long-term clinical responses independent of the peptide used. Cancer Immunol Immunother. 2011. V. 60. № 2. Р. 249—60.
  80. Lowenfeld L., Mick R., Datta J., et al. Dendritic cell vaccination enhances immune responses and induces regression of HER2pos DCIS independent of route: results of randomized selection design trial. Clin Cancer Res. 2016. PMID: 27965306 [PubMed — as supplied by publisher].
  81. Segal N.H., Logan T.F., Hodi F.S. et al. Results from an integrated safety analysis of urelumab, an agonist anti-CD137 monoclonal antibody. Clin Cancer Res. 2017. V. 23. № 8. Р. 1929—36.
  82. Slavyanskaya Т.А., Salnikova S.V. et al. Target Therapy of Urothelial Carcinoma Patients. Allergology & Immunology. 2016. V. 17. No 2. P. 153. (translation)
  83. Gasser O., Sharples K.J., Barrow C., Williams G.M., Bauer E., Wood C.E., et al. A phase I vaccination study with dendritic cells loaded with NY-ESO-1 and α-galactosylceramide: induction of polyfunctional T cells in high-risk melanoma patients. Cancer Immunol Immunother. 2018. Feb; V. 67. № 2. Р. 285—98.
  84. Chkadua G.Z., Zabotina T.N., Burkova А.А., Tamayeva Z.E., Ogorodnikova Y.V., Zhordania K.I. Adaptation of Methods of Human Dendrite Cell Cultivation From Peripheral Blood Monocytes for Clinical Administration. Russian Journal of Biotherapeutics. 2002. No 3. P. 56—62. (translation)
  85. Sasada T., Suekane S. Variation of tumor-infiltrating lymphocytes in human cancers: controversy on clinical significance. Immunotherapy. 2011. V. 3. № 10. Р. 1235—51.
  86. Erdogar N., Iskit A.B., Eroglu H., Sargon M.F., Mungan N.A., Bilensoy E. Cationic core-shell nanoparticles for intravesical chemotherapy in tumor-induced rat model: Safety and efficacy. Int. J. Pharm. 2014. № 471. Р. 1—9.
  87. Erdogar N., Iskit A.B., Mungan N.A., Bilensoy E. Prolonged retention and in vivo evaluation of cationic nanoparticles loaded with Mitomycin C designed for intravesical chemotherapy of bladder tumours. J. Microencapsul. 2012. № 29. Р. 576—82.
  88. Nowicka A.M., Kowalczyk A., Jarzebinska A., Donten M., Krysinski P., Stojek Z. et al. Progress in targeting tumor cells by using drug-magnetic nanoparticles conjugate. Biomacromolecules 2013. № 14. Р. 828—33.
  89. Wei Y., Gao L., Wang L., Shi L., Wei E., Zhou B. et al. Polydopamine and peptide decorated doxorubicin-loaded mesoporous silica nanoparticles as a targeted drug delivery system for bladder cancer therapy. Drug Deliv. 2017. № 24. Р. 681—91.
  90. Zhang Q., Neoh K. G., Xu L., Lu S., Kang E. T., Mahendran R. et al. Functionalized mesoporous silica nanoparticles with mucoadhesive and sustained drug release properties for potential bladder cancer therapy. Langmuir. 2014. № 30. Р. 6151—61.
  91. Sudha T., Bharali D.J., Yalcin M., Darwish N.H., Coskun M.D., Keating K.A., et al. Targeted delivery of cisplatin to tumor xenografts via the nanoparticle component of nano-diamino-tetrac. Nanomedicine (Lond). 2017 Feb;12(3):195—205.
  92. McKiernan J.M., Barlow L.J., Laudano M.A., Mann M.J., Petrylak D.P., Benson M.C. A phase I trial of intravesical nanoparticle albumin-bound paclitaxel in the treatment of bacillus Calmette-Guérin refractory nonmuscle invasive bladder cancer. J. Urol. 2011. № 186. Р. 448—51.
  93. Eloy J.O., Petrilli R., Trevizan L.N.F., Chorilli M. Immunoliposomes: a review on functionalization strategies and targets for drug delivery. Colloids Surf. B Biointerfaces 2017. № 159. Р. 454—67.
  94. Bilensoy E., Sarisozen C., Esendagli G., Dogan A.L., Aktaş Y., Sen M., et al. Intravesical cationic nanoparticles of chitosan and polycaprolactone for the delivery of Mitomycin C to bladder tumors. Int. J. Pharm. 2009. № 371. Р. 170—76.

Statistics

Views

Abstract - 682

PDF (Russian) - 272

Cited-By


PlumX

Dimensions


Copyright (c) 2018 Salnikova S.V., Slavyanskaya T.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies