Numerical simulation of the front of an air shock wave in a ground and air explosion in the software package LS-DYNA

Cover Page

Cite item

Abstract

Introduction and objectives. When calculating buildings and structures for special combinations of loads caused by the action of air shock waves, it is necessary to determine the main parameters of the actual load. The regulatory approach implemented in modern regulatory documents proposes the use of simplified calculation methods based on the use of equivalent static loads. The aim of the study is to obtain the basic parameters of air shock waves, as well as to consider the nature of the propagation of the shock wave front during an explosion on the ground and in the air, using numerical simulation. Materials and methods. To obtain the basic parameters of air shock waves, high-precision numerical methods implemented in the modern LS-DYNA software package are considered. To describe the explosion process, the LagrangianEulerian approach is used. Results. Isopoles and graphs of excess overpressure Δ Р ф over atmospheric pressure in an air shock wave were obtained when the epicenter of the explosion was located at ground level and in the air, as well as at a distance from the designed structure. Conclusions. The considered method of numerical simulation allows to obtain the main parameters of air shock waves, which can be used for further calculation of building structures.

About the authors

Oleg V Mkrtychev

Moscow State University of Civil Engineering (National Research University)

Author for correspondence.
Email: mkrtychev@yandex.ru

Dr Sci. (Eng.), Professor of the Strength of Materials Department

26 Yaroslavskoye Shosse, Moscow, 129337, Russian Federation

Anton Y Savenkov

Moscow State University of Civil Engineering (National Research University)

Email: savenkov.asp@mail.ru

post-graduate student, student of the Strength of Materials Department

26 Yaroslavskoye Shosse, Moscow, 129337, Russian Federation

References

  1. Andreev S.G., Babkin A.V., Baum F.A., Imhovik N.A. et al. (2004). Fizika vzryva. T. 2 [Physics of a Blast. Vol. 2]. Moscow, Fizmatlit Publ., 832. (In Russ.)
  2. Rastorguev B.S., Plotnikov A.I., Khusnutdinov D.Z. (2007). Proektirovanie zdaniy i sooruzheniy pri avariynykh vzryvnykh vozdeystviyakh [Design of Buildings and Structures Exposed to Emergency Blast Effects]. Moscow, ASV Publ., 152. (In Russ.)
  3. Birbraer A.N., Roleder A.Yu. (2009). Ekstremal'nye vozdejstviya na sooruzheniya [Extreme Impacts on Structures]. Saint Petersburg, Politekhnicheskii universitet Publ., 594. (In Russ.)
  4. Bazhenova T.V., Gvozdeva L.G. (1977). Nestatsionarnyye vozdeystviya udarnykh voln [Unsteady shock wave action]. Moscow, Nauka Publ., 274. (In Russ.)
  5. Bate K., Vilson Ye. (1982). Chislennyye metody analiza i metoda konechnykh elementov [Numerical analysis methods and finite element method]. Moscow, Stroyizdat Publ., 448. (In Russ.)
  6. Van Leer B.J. (1979). Towards the ultimate conservative difference scheme. Second-order sequel to Godunov's Method. J. Comput. Phys., 32(1), 101–136. (In Dutch)
  7. Sadovskiy M.A. (1952). Mekhanicheskoye vozdeystviye vozdushnykh udarnykh voln po dannym eksperimental'nykh issledovaniy [Mechanical action of air shock waves according to experimental studies]. Fizika vzryva: sb. trudov v oblasti fiziki vzryva, (1), 20–110. Moscow, In-t khim. i fiziki, AN SSSR Publ. (In Russ.)
  8. Livermore Software Technology Corporation (LSTC). (May 2017). LS-DYNA. Keyword user’s manual. Volume I. Version 971. Retrieved from www.dynasupport.com
  9. Mkrtychev O.V., Dorozhinskiy V.B. (2012). Analiz podkhodov k opredeleniyu parametrov vzryvnogo vozdeystviya [Analysis of approaches to identification of parameters of blast effects]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering], (5), 45–49. (In Russ.)
  10. Mkrtychev O.V., Dorozhinskiy V.B. (2011). Bezopasnost’ zdaniy i sooruzheniy pri vzryvnykh vozdeystviyakh [Safety of Buildings and Structures Exposed to Blast Effects]. In I.I. Vedyakov, G.S. Vardanyan (Eds.). Vestnik NITs “Stroitel’stvo”. Issledovaniya po teorii sooruzheniy [Proceedings of Construction Scientific and Research Center. Structural Theory Research], XXVIII(3–4), 21–34. (In Russ.)
  11. Mkrtychev O.V., Dorozhinskiy V.B. (2012). Veroyatnostnoye modelirovaniye vzryvnogo vozdeystviya [Probabilistic modeling of explosive loading]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering], (11), 278–228. (In Russ.)
  12. Mkrtychev O.V., Dorozhinskiy V.B., Lazarev O.V. (2011). Raschet konstruktsiy zhelezobetonnogo zdaniya na vzryvnyye nagruzki v nelineynoy dinamicheskoy postanovke [The calculation of reinforced concrete buildings constructions on the explosive loads in the nonlinear dynamic formulation]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering], (4), 243–247. (In Russ.)
  13. Mkrtychev O.V., Dorozhinskiy V.B., Sidorov D.S. (2016). Nadezhnost' stroitel'nykh konstruktsiy pri vzryvakh i pozharakh [Reliability of building structures during explosions and fires]. Moscow, ASV Publ., 173. (In Russ.)

Copyright (c) 2018 Mkrtychev O.V., Savenkov A.Y.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies