Implicit vs explicit evaluation: How English-speaking Twitter users discuss migration problems
- 作者: Gabrielova E.V.1, Maksimenko O.I.2
-
隶属关系:
- National Research University Higher School of Economics
- Moscow Region State University
- 期: 卷 25, 编号 1 (2021)
- 页面: 105-124
- 栏目: Articles
- URL: https://journals.rudn.ru/linguistics/article/view/26000
- DOI: https://doi.org/10.22363/2687-0088-2021-25-1-105-124
如何引用文章
全文:
详细
The current research answers the question how Twitter users express their evaluation of topical social problems (explicitly or implicitly) and what linguistic means they use, being restricted by the allowed length of the message. The article explores how Twitter users communicate with each other and exchange ideas on social issues of great importance, express their feelings using a number of linguistic means, while being limited by a fixed number of characters, and form solidarity, being geographically distant from each other. The research is focused on the linguistic tools employed by Twitter users in order to express their personal attitude. The subject chosen for study was the migration processes in Europe and the USA. The aim of the current investigation is to determine the correlation between the attitudes of English-speaking users towards migration and the way they are expressed implicitly or explicitly. The authors make an attempt to define which tools contribute to the implicit or explicit nature of the utterances. The material includes 100 tweets of English-speaking users collected from February 1 to July 31, 2017. The choice of the time period is defined by significant events in Trump’s migration policy and their consequences. The research is based on the content analysis of the material carried out by means of the Atlas.ti program. The software performs the coding of textual units, counts the frequency of codes and their correlation. The results of the research show that Twitter users tend to express their critical attitudes towards migration, rather than approve of it or sympathise with migrants. Criticism is more often expressed implicitly rather than explicitly. In order to disguise the attitude and feelings, the English-speaking users of Twitter employed irony, questions and quotations, while the explicit expression of attitudes was done by means of imperative structures. It is also worth mentioning that ellipses, contractions and abbreviations were used quite frequently due to the word limit of tweets. At the same time, the lack of knowledge about extralinguistic factors and personal characteristics of users makes the process of interpretation of tweets rather challenging. The findings of the current research suggest the necessity to take into account implicit negative attitudes while carrying out the analysis of public opinion on Twitter.
作者简介
Elena Gabrielova
National Research University Higher School of Economics
编辑信件的主要联系方式.
Email: evgabrielova@hse.ru
Ph.D., Senior Lecturer at the School of Foreign Languages at the National Research University “Higher School of Economics”. Her research interests include applied linguistics, political and mass communication, personal evaluation and emotions in Internet discourse, as well as political communication.
Myastnitskaya str., 20, Moscow, 101000Olga Maksimenko
Moscow Region State University
Email: maxbel7@yandex.ru
Dr. habil., Professor at the Faculty of Linguistics at Moscow Region State University. Her research interests embrace applied linguistics, quantitative linguistics, linguoconflictology, diplomatic discourse and sentiment analysis.
Very Voloshinoy street, 24, Mytishchi, Moscow Region, 141014参考
- Alsaeedi, Abdullah & Mohammad Zubair Khan. 2019. A study on sentiment analysis techniques of Twitter data. International Journal of Advanced Computer Science and Applications 10 (2). 361-374.
- Bamman, David, Jacob Eisenstein & Tyler Schnoebelen. 2014. Gender identity and lexical variation in social media. Journal of Sociolinguistics 18 (2). 135-160. doi: 10.1111/josl.12080
- Baranov, Anatoliy. 2007. Lingvisticheskaja jekspertiza teksta. Teoreticheskie osnovanija i praktika [The Linguistic Expertise of a Text. Theoretical Foundations and Practice]. Мoscow, Russia: Flinta: Nauka.
- Baron, Naomi S. 2008. Always on: Language in an Online and Mobile World. Oxford: OUP.
- Alsaeedi, Abdullah & Mohammad Zubair Khan. 2019. A study on sentiment analysis techniques of Twitter data. International Journal of Advanced Computer Science and Applications 10 (2). 361-374.
- Bamman, David, Jacob Eisenstein & Tyler Schnoebelen. 2014. Gender identity and lexical variation in social media. Journal of Sociolinguistics 18 (2). 135-160. doi: 10.1111/josl.12080
- Baranov, Anatoliy. 2007. Lingvisticheskaja jekspertiza teksta. Teoreticheskie osnovanija i praktika [The Linguistic Expertise of a Text. Theoretical Foundations and Practice]. Мoscow, Russia: Flinta: Nauka.
- Baron, Naomi S. 2008. Always on: Language in an Online and Mobile World. Oxford: OUP.
- Basáñez, Tatiana, Anuja Majmundar, Tes Boley Cruz & Jeniffer B. Unger. 2018. Vaping associated with healthy food words: A content analysis of Twitter. Addictive Behaviors Reports 8. 147-153. doi: 10.1016/j.abrep.2018.09.007
- Belyakov, Mikhail. 2015. Emotive character of a diplomatic discourse. Russian Journal of Linguistics 2. 124-132.
- Brundidge, Jennifer. 2010. Encountering “difference” in the contemporary public sphere: The contribution of the Internet to the heterogeneity of political discussion networks. Journal of Communication 60 (4). 680-700. doi: 10.1111/j.1460-2466.2010.01509.x
- De Haas, Hein, Stephen Castles & Mark J. Miller. 2019. The Age of Migration: International Population Movements in the Modern World. Guilford Press.
- Crystal, David. 2001. Language and the Internet. Cambridge: CUP.
- Earl, Jennifer, & Katrina Kimport. 2011. Digitally Enabled Social Change: Activism in the Internet Age. MA: MIT Press, Cambridge.
- Ebzeeva, Julija & Irina Karabulatova. 2017. Novye aspekty issledovanija kommunikacii v sovremennyh social'nyh setjah. [New aspects of the research of communication in contemporary social networks]. The Bulletin of the Adyghe State University, the series “Region Studies: Philosophy, History, Sociology, Jurisprudence, Political Sciences and Culturology” 4 (209). 258-267.
- Fischer, Eilee & Rebecca A. Reuber. 2011. Social interaction via new social media: (How) can interactions on Twitter affect effectual thinking and behavior? Journal of Business Venturing 26 (1). 1-18. doi: 10.1016/j.jbusvent.2010.09.002
- Gabrielova, Elena. 2014. New media in the protest movement: explicit and implicit expression of point of view on the protest movement Occupy Wall Street on Twitter. Journal of Psycholinguistics 3 (21). 150-159.
- Gabrielova, Elena. 2015. Implicit and explicit ways of expressing personal opinion on Twitter: The Tea Party movement in the USA. (Working Paper N. 90). Working Papers of Humanities: National Research University Higher School of Economics.
- Greenhow, Christine & Benjamin Gleason. 2012. Twitteracy: Tweeting as a new literacy practice. The Education Forum 76 (4). 464-478. doi: 10.1080/00131725.2012.709032
- Greenhow, Christine & Beth Robelia. 2009. Informal learning and identity formation in online social networks. Learning Media and Technology 34 (2). 119-140. doi: 10.1080/17439880902923580
- Hardy, Bruce W. & Dietram A. Scheufele. 2005. Examining differential gains from Internet use: Comparing the moderating role of talk and online interactions. Journal of Communication. International Communication Association 55 (1). 71-84. DOI j.1460-2466.2005.tb02659.x
- Kaase, Max. 1999. Interpersonal trust, political trust and non-institutionalised political participation in Western Europe. West European Politics 22 (3). 1-21. doi: 10.1080/01402389908425313
- Maksimenko, Olga & Tatiana Semina. 2019. Sozdanie korpusa tekstov dlya analiza tonal'nosti [Creating a corpus for sentiment analysis]. Proceedings of National Association of Applied Linguistics 3 (27). 106-114.
- Nagarajan, Senthil Murugan & Usha Devi Gandhi. 2019. Classifying streaming of Twitter data based on sentiment analysis using hybridization. Neural Computing and Applications 31 (5). 1425-1433. doi: 10.1007/s00521-018-3476-3
- Pechenikhina, Ekaterina. 2008. Yazykovoe vyrazhenie ironii v proizvedeniyakh Zh.M. Esy de Keyrosha [Verbal expression of irony in works by Esy Keyrosh]. Moscow University Philology Bulletin 4. 140-147.
- Pennebaker, James W., Martha E. Francis & Roger J. Booth. 2001. Linguistic inquiry and word count: LIWC 2001. Mahway: Lawrence Erlbaum Associates, 71.
- Pennebaker, James W. 1993. Putting stress into words: Health, linguistic, and therapeutic implications. Behaviour Research and Therapy 31 (6). 539-548. doi: 10.1016/0005-7967(93)90105-4
- Porter, Lance, Kaye Sweetser & Deborah Chung. 2009. The blogosphere and public relations. Investigating practioner’s role and blog use. Journal of Communication Management 13 (3), 250-267. doi: 10.1108/13632540910976699
- Popova, Zinaida & Iosif Sternin. 2007. Obshchee Yazykoznanie [General Linguistics]. 2nd edn. Moscow: AST: Vostok-Zapad.
- Renkema, Jan. 2009. The Texture of Discourse. Towards an Outline of Connectivity Theory. Amsterdam: John Benjamins Publishing Company.
- Rojas, Hernando & Eulalia Puig-i-Abril. 2009. Mobilizers mobilized: Information, expression, mobilization and participation in the digital age. Journal of Computer-Mediated Communication 14 (4). 902-927. doi: 10.1111/j.1083-6101.2009.01475.x
- Sharafutdinova, Svetlana. 2009. Sportivnaya analiticheskaya stat'ya kak zhanr diskursa SMI [Sport analytical article as a genre of mass media discourse]. Bulletin of Chelyabinsk State University 34 (172). 141-145.
- Schultz, Friederike, Sonja Utz & Anja Göritz. 2011. Is the medium the message? Perceptions of and reactions to crisis communication via twitter, blogs and traditional media. Public relations review 37 (1). 20-27. doi: 10.1016/j.pubrev.2010.12.001
- Simon-Vandenbergen, Anne-Marie, Miriam Taverniers & Louise J. Ravelli. 2003. Grammatical Metaphor: Views from Systemic Functional Linguistics. Amsterdam: John Benjamins Publishing Company.
- Stemler, Steve. 2001. An overview of content analysis. Practical Assessment, Research & Evaluation 7 (17). doi: 10.7275/z6fm-2e34
- Stubbs, Michael. 1983. Discourse analysis: the sociolinguistic analysis of natural language. Chicago: University of Chicago Press.
- Tejerina, Benjamin, Ignacia Perugorría, Tova Benski & Lauren Langman. 2013. From the streets and squares to social movement studies: What have we learned? Current Sociology 61 (4). 541-561. doi: 10.1177/0011392113479753
- Villarroel Ordenes, Francisco, Stephan Ludwig, Ko De Ruyter, Dhruv Grewal & Martin Wetzels. 2017. Unveiling what is written in the stars: Analyzing explicit, implicit, and discourse patterns of sentiment in social media. Journal of Consumer Research 43 (6). 875-894. doi: 10.1093/jcr/ucw070
- Vlieger, Esther & Loet Leydesdorff. 2011. Content analysis and the measurement of meaning: The visualization of frames in collections of messages. The Public Journal of Semiotics 3 (1). 321-339.
- Wirawanda, Yudha & Tangguh Okta Wibowo. 2018. TWITTER: Expressing Hate Speech Behind Tweeting. Profetik: Jurnal Komunikasi 11 (1). 5-11. doi: 10.14421/pjk.v11i1.1378
- Yule, George. 1996. The Study of Language. 2nd ed. Cambridge: CUP.
- Zanzotto, Fabio Massimo, Marco Pennacchiotti & Kostas Tsioutsiouliklis. 2011. Linguistic redundancy in Twitter. Proceedings of the 2011 Conference on empirical methods in natural language processing. Edinburgh, Scotland, 659-669.
- Basáñez, Tatiana, Anuja Majmundar, Tes Boley Cruz & Jeniffer B. Unger. 2018. Vaping associated with healthy food words: A content analysis of Twitter. Addictive Behaviors Reports 8. 147-153. doi: 10.1016/j.abrep.2018.09.007
- Belyakov, Mikhail. 2015. Emotive character of a diplomatic discourse. Russian Journal of Linguistics 2. 124-132.
- Brundidge, Jennifer. 2010. Encountering “difference” in the contemporary public sphere: The contribution of the Internet to the heterogeneity of political discussion networks. Journal of Communication 60 (4). 680-700. doi: 10.1111/j.1460-2466.2010.01509.x
- De Haas, Hein, Stephen Castles & Mark J. Miller. 2019. The Age of Migration: International Population Movements in the Modern World. Guilford Press.
- Crystal, David. 2001. Language and the Internet. Cambridge: CUP.
- Earl, Jennifer, & Katrina Kimport. 2011. Digitally Enabled Social Change: Activism in the Internet Age. MA: MIT Press, Cambridge.
- Ebzeeva, Julija & Irina Karabulatova. 2017. Novye aspekty issledovanija kommunikacii v sovremennyh social'nyh setjah. [New aspects of the research of communication in contemporary social networks]. The Bulletin of the Adyghe State University, the series “Region Studies: Philosophy, History, Sociology, Jurisprudence, Political Sciences and Culturology” 4 (209). 258-267.
- Fischer, Eilee & Rebecca A. Reuber. 2011. Social interaction via new social media: (How) can interactions on Twitter affect effectual thinking and behavior? Journal of Business Venturing 26 (1). 1-18. doi: 10.1016/j.jbusvent.2010.09.002
- Gabrielova, Elena. 2014. New media in the protest movement: explicit and implicit expression of point of view on the protest movement Occupy Wall Street on Twitter. Journal of Psycholinguistics 3 (21). 150-159.
- Gabrielova, Elena. 2015. Implicit and explicit ways of expressing personal opinion on Twitter: The Tea Party movement in the USA. (Working Paper N. 90). Working Papers of Humanities: National Research University Higher School of Economics.
- Greenhow, Christine & Benjamin Gleason. 2012. Twitteracy: Tweeting as a new literacy practice. The Education Forum 76 (4). 464-478. doi: 10.1080/00131725.2012.709032
- Greenhow, Christine & Beth Robelia. 2009. Informal learning and identity formation in online social networks. Learning Media and Technology 34 (2). 119-140. doi: 10.1080/17439880902923580
- Hardy, Bruce W. & Dietram A. Scheufele. 2005. Examining differential gains from Internet use: Comparing the moderating role of talk and online interactions. Journal of Communication. International Communication Association 55 (1). 71-84. doi: 10.1111/j.1460-2466.2005.tb02659.x
- Kaase, Max. 1999. Interpersonal trust, political trust and non-institutionalised political participation in Western Europe. West European Politics 22 (3). 1-21. doi: 10.1080/01402389908425313
- Maksimenko, Olga & Tatiana Semina. 2019. Sozdanie korpusa tekstov dlya analiza tonal'nosti [Creating a corpus for sentiment analysis]. Proceedings of National Association of Applied Linguistics 3 (27). 106-114.
- Nagarajan, Senthil Murugan & Usha Devi Gandhi. 2019. Classifying streaming of Twitter data based on sentiment analysis using hybridization. Neural Computing and Applications 31 (5). 1425-1433. doi: 10.1007/s00521-018-3476-3
- Pechenikhina, Ekaterina. 2008. Yazykovoe vyrazhenie ironii v proizvedeniyakh Zh.M. Esy de Keyrosha [Verbal expression of irony in works by Esy Keyrosh]. Moscow University Philology Bulletin 4. 140-147.
- Pennebaker, James W., Martha E. Francis & Roger J. Booth. 2001. Linguistic inquiry and word count: LIWC 2001. Mahway: Lawrence Erlbaum Associates, 71.
- Pennebaker, James W. 1993. Putting stress into words: Health, linguistic, and therapeutic implications. Behaviour Research and Therapy 31 (6). 539-548. doi: 10.1016/0005-7967(93)90105-4
- Porter, Lance, Kaye Sweetser & Deborah Chung. 2009. The blogosphere and public relations. Investigating practioner’s role and blog use. Journal of Communication Management 13 (3), 250-267. doi: 10.1108/13632540910976699
- Popova, Zinaida & Iosif Sternin. 2007. Obshchee Yazykoznanie [General Linguistics]. 2nd edn. Moscow: AST: Vostok-Zapad.
- Renkema, Jan. 2009. The Texture of Discourse. Towards an Outline of Connectivity Theory. Amsterdam: John Benjamins Publishing Company.
- Rojas, Hernando & Eulalia Puig-i-Abril. 2009. Mobilizers mobilized: Information, expression, mobilization and participation in the digital age. Journal of Computer-Mediated Communication 14 (4). 902-927. doi: 10.1111/j.1083-6101.2009.01475.x
- Sharafutdinova, Svetlana. 2009. Sportivnaya analiticheskaya stat'ya kak zhanr diskursa SMI [Sport analytical article as a genre of mass media discourse]. Bulletin of Chelyabinsk State University 34 (172). 141-145.
- Schultz, Friederike, Sonja Utz & Anja Göritz. 2011. Is the medium the message? Perceptions of and reactions to crisis communication via twitter, blogs and traditional media. Public relations review 37 (1). 20-27. doi: 10.1016/j.pubrev.2010.12.001
- Simon-Vandenbergen, Anne-Marie, Miriam Taverniers & Louise J. Ravelli. 2003. Grammatical Metaphor: Views from Systemic Functional Linguistics. Amsterdam: John Benjamins Publishing Company.
- Stemler, Steve. 2001. An overview of content analysis. Practical Assessment, Research & Evaluation 7 (17). doi: 10.7275/z6fm-2e34
- Stubbs, Michael. 1983. Discourse analysis: the sociolinguistic analysis of natural language. Chicago: University of Chicago Press.
- Tejerina, Benjamin, Ignacia Perugorría, Tova Benski & Lauren Langman. 2013. From the streets and squares to social movement studies: What have we learned? Current Sociology 61 (4). 541-561. doi: 10.1177/0011392113479753
- Villarroel Ordenes, Francisco, Stephan Ludwig, Ko De Ruyter, Dhruv Grewal & Martin Wetzels. 2017. Unveiling what is written in the stars: Analyzing explicit, implicit, and discourse patterns of sentiment in social media. Journal of Consumer Research 43 (6). 875-894. doi: 10.1093/jcr/ucw070
- Vlieger, Esther & Loet Leydesdorff. 2011. Content analysis and the measurement of meaning: The visualization of frames in collections of messages. The Public Journal of Semiotics 3 (1). 321-339.
- Wirawanda, Yudha & Tangguh Okta Wibowo. 2018. TWITTER: Expressing Hate Speech Behind Tweeting. Profetik: Jurnal Komunikasi 11 (1). 5-11. doi: 10.14421/pjk.v11i1.1378
- Yule, George. 1996. The Study of Language. 2nd ed. Cambridge: CUP.
- Zanzotto, Fabio Massimo, Marco Pennacchiotti & Kostas Tsioutsiouliklis. 2011. Linguistic redundancy in Twitter. Proceedings of the 2011 Conference on empirical methods in natural language processing. Edinburgh, Scotland, 659-669.
- Kozlovskij, Vladimir. 2017. Storonniki Trampa: “Strana bez granic - jeto ne strana” (Trump supporters: “The country without borders is not a country”). Russian BBC. URL: http://www.bbc.com/russian/features-38807554 (accessed: 10 March 2020)
- Montgomery, David, Manny Fernandez & Yonette Joseph. 2017. Journey fatal for 9 migrants found in truck in a San Antonio parking lot. The New York Times. URL: https://www.nytimes.com/2017/07/23/us/san-antonio-truck-walmart-trafficking.html (accessed: 8 June 2020)
- World Migration Report. The international organization for migration. URL: https://www.iom.int/wmr/world-migration-report-2018
- Zimmer, Ben. 2011. On the front line of Twitter linguistics. [Blog post]. URL: http://languagelog.ldc.upenn.edu/nll/?p=3536> (accessed: 8 June 2020)