Учебная цифровая медицинская среда как средство обучения информатике студентов-медиков
- Авторы: Гриншкун В.В.1, Итинсон К.С.2
-
Учреждения:
- Российский университет дружбы народов
- Курский государственный медицинский университет
- Выпуск: Том 21, № 2 (2024)
- Страницы: 169-180
- Раздел: ЦИФРОВАЯ ОБРАЗОВАТЕЛЬНАЯ СРЕДА
- URL: https://journals.rudn.ru/informatization-education/article/view/42752
- DOI: https://doi.org/10.22363/2312-8631-2024-21-2-169-180
- EDN: https://elibrary.ru/JOBPQE
- ID: 42752
Цитировать
Полный текст
Аннотация
Постановка проблемы. Будущий врач должен владеть базовыми и профессиональными теоретическими знаниями, иметь определенные практические медицинские навыки, а также навыки работы с информационными системами и цифровыми программами. Cтудентов медицинского вуза важно подготовить к работе в цифровой среде здравоохранения для эффективного функционирования в современных медицинских учреждениях в будущей профессиональной деятельности. Необходимо внедрение цифровой медицинской среды как в процесс обучения студентов-медиков, так и в их профессиональную деятельность, что значительно повысит качество лечебной и профилактической деятельности врачей, а также снизит количество врачебных ошибок. Методология . Каждая цифровая среда здравоохранения рассчитана на определенную область медицины, то есть для решения узкого круга задач. Поэтому создание и апробация универсальной цифровой системы интеллектуального анализа медицинских данных, полученных из разных приборов и от разных врачей, являются важными задачами и методами исследования. Результаты . Создана учебная цифровая медицинская среда, главной целью которой является интеграция и анализ медицинских данных и электронная поддержка будущих врачей при назначении лабораторных и инструментальных обследований, постановке диагноза и назначении соответствующего лечения. Заключение . Главным преимуществом разработанной учебной цифровой медицинской среды является ее универсальность, так как она подходит для врача любой специальности, обеспечивая непрерывное взаимодействие между ними. Цифровая среда будет использоваться как в процессе обучения студентов-медиков, так и в их будущей профессиональной деятельности.
Полный текст
Problem statement. The system of higher medical education in Russia is constantly changing related to the introduction of digital technologies into the educational process. A modern graduate of a medical university must possess a set of basic and professional theoretical knowledge, have the definite practical skills and of course skills in working with information resources, digital programs and analyzing the information received. Obviously, future doctors must be ready to work in a digital healthcare environment if they want to work effectively in modern medical institutions. The digital healthcare environment is a combination of information systems that are necessary to achieve the goals of informatization, improving the quality of medical care and medical aid, including reducing the number of medical errors, the availability of medical services, as well as protecting personal and medical data. Modern digital healthcare environments are computer programs that can help a doctor diagnose diseases based on clinical findings. The aim of such environments is to support future doctors, help them in prescribing treatment and examinations. Moreover, digital healthcare environments help doctors in making a diagnosis on the basis of a patient data, including full-age data, patient’s complaints and symptoms, the results of objective examination, laboratory and instrumental methods of investigation [1; 2]. Nowadays all medical institutions need to use modern equipment, especially in situations related to emergency situations, when doctors must make decisions very quickly. Besides, improvement and introduction of new methods of treatment and investigation, using of medical environments or systems of medical care, medical emergency, one way or another, are connected with information technologies [3]. D.A. Mikov proves that the procedure of making a medical decision can be presented in the form of the following stages [4]: - description of the patient's condition (conducting examinations, diagnosis); - analysis of limitations (allergies, dysfunctions of body subsystems, etc.); - selection of treatment method/drugs; - prognosis of treatment outcome options (safety assessment, possibility of adverse reactions). All these stages should be realized in the interaction between doctors and the digital healthcare environment is as follows [5]: 1. The patient undergoes an examination. 2. The image obtained from the diagnostic equipment is loaded into the system. 3. To clarify the diagnosis, the attending physician can contact a diagnostician. 4. The diagnostician uses an expert program for processing studies, make a diagnosis. 5. Diagnostic results are posted to the digital system. 6. The attending physician prescribes treatment based on the data obtained. The creation of a digital healthcare environment is a prerequisite for the training of a new type of personnel on local and international levels for the medicine of the future, who are able to solve professional problems using digital technologies [6; 7]. Sabitova N.G. proves that there should be serious requirements for the training of future physicians and their mastery of digital literacy and competencies to solve professional tasks in the digital healthcare environment, master software platforms in medical information systems and communication competencies in telemedicine technologies, carry out electronic document management, manage information and digital arrays in medical databases, etc. [8]. In developing digital healthcare environments, used in medicine, several goals are pursued. First, it is necessary to increase the efficiency of treatment. Secondly, it is necessary to minimize the number of medical errors. Third, it is necessary to optimize the cost of patient care. Next, it’s crucial for medical universities to provide the country with doctors, who are highly qualified specialists with profound medical knowledge. Moreover, a digital healthcare environment helps doctors to work in changed epidemiological situation, for example, there was the epidemic of COVID-19 in 2020. The last aim is the introduction of the systems for monitoring patients’ condition and preventive work [9-11]. To achieve the above goals, it is necessary to provide real-time decision-making process of medical staff. It is a digital healthcare environment that allows to achieve proper automation of these goals. As a rule, each digital healthcare environment is designed for a specific field of medicine: ophthalmology, oncology, pediatrics, cardiologist, surgery, etc., thus it can be argued that each system is designed to solve a narrow range of problems. In turn, it can be concluded that the data, collected for electronic health records, have different formats of both structured and unstructured records. Thus, there is an urgent problem of creating a system or an environment, aimed at analysis of medical data of patients, the results of examinations, different doctors’ notes and diagnosis with different types of data (graphical, numerical, textual) [12-14]. The development of such digital healthcare environments is an important task, because when doctors try to make diagnoses, they can make mistakes. The main reasons are a lack of knowledge, little time, inexperienced doctors and incomplete medical information about patients’ conditions [15-17]. Methodology. The performed analysis of the used means of informatization in the educational process of a medical university allowed to conclude that it is necessary to develop a universal digital platform, which implies the use of information technologies and tools to improve the quality of decisions made by doctors. Such a platform will be used by teachers and students while studying at university, and then by doctors in their professional work and will be an important part of an information educational environment of a medical university [18]. As part of the research, a Learning Digital Medical Environment was created, the objectives of which are as follows: - electronic document management (electronic health records of patients, information about patients, their laboratory and instrumental examinations, medical diagnosis of different doctors); - analyzing large amounts of medical data; - electronic support for physicians in prescribing laboratory and instrumental examinations, making a diagnosis and prescribing appropriate treatment; - unification of the medical environment (doctors of any specialty work in the digital environment); - medical data integration (collection and integration of all laboratory and instrumental tests and doctors' conclusions on a particular patient for qualitative assessment of the patient's current condition, giving diagnosis and prescribing effective treatment). Results and discussion. The design and interface of the created Learning Digital Medical Environment was developed in the Figma program, which is a collaborative graphic editor. The interactive prototype of the learning digital environment created in the ProtoPie program was tested by students and teachers, as a result of which changes were made to the prototype after analyzing the results obtained. The finished learning digital environment was created using the Python programming language. Python is a high-level, interpreted programming language that supports several programming paradigms, including procedural, object-oriented and functional programming. The Learning Digital Medical Environment is both a database of electronic health records of patients and the system which a doctor uses during an appointment at a medical institution. The main idea of the system is that it helps students in learning process and doctors in making professional decisions. The main menu of the developed Learning Digital Medical Environment consists of six blocks: “Patient Data”, “Symptoms and Complaints”, “Examination and Tests”, “Preliminary Diagnosis”, “Final Diagnosis”, “Complete an Appointment”. The “Patient Data” block contains information about a patient: date of birth, passport data, place of registration, actual residence address, phone number. The “Symptoms and Complaints” block includes the following sub-blocks: “Symptoms and Complaints of a patient”, “Medical History”, “Objective Examinations of a Patient”, which are filled in by a doctor at the first appointment of a patient (Figure 1). The “Tests and Examinations” main menu block contains main menu all laboratory and instrumental examinations prescribed by a doctor and performed by a patient. The “Preliminary Diagnosis” main menu block is a preliminary diagnosis offered by the system based on the analysis of patient's symptoms and complaints entered into the system by a doctor, patient's medical history and objective examination. The “Preliminary Diagnosis” block contains sub-blocks “Recommended Laboratory and Instrumental Examination” and “Necessary Medical Consultations”, which Learning Digital Medical Environment recommends to a doctor based on a preliminary diagnosis, which the doctor agrees with or modifies (Figure 2). Изображение выглядит как текст, снимок экрана, Веб-сайт, веб-страница Автоматически созданное описание Figure 1. Determining the patient's symptoms and complaints, performing an objective examination of the patient as an important stage in making a preliminary diagnosis Source: made by Vadim V. Grinshkun, Kristina S. Itinson. Изображение выглядит как текст, снимок экрана, программное обеспечение, веб-страница Автоматически созданное описание Figure 2. Preliminary diagnosis, examinations and medical consultations to a patient offered by Learning Digital Medical Environment based on patient's symptoms and complaints, medical history, objective examinations entered into the system by a doctor Source: made by Vadim V. Grinshkun, Kristina S. Itinson. The “Final Diagnosis” main menu block involves downloading patient's medical data from an electronic health record, namely the results of medical consultations and laboratory and instrumental tests in xlsx format. Learning digital medical system, having analyzed patient's medical examinations downloaded from an electronic health record, displays a final diagnosis and recommended treatment, which a doctor proves or makes adjustments (Figure 3). Изображение выглядит как текст, снимок экрана, Веб-сайт, веб-страница Автоматически созданное описание Figure 3. Final diagnosis and treatment offered by Learning Digital Medical Environment based on analysis of the patient's medical data Source: made by Vadim V. Grinshkun, Kristina S. Itinson. An important structural element of Learning Digital Medical Environment is the database of electronic health records. Any physician authorized in the digital system can search for a patient by name, date of admission, an attending physician, and department. Let's consider an example of storing medical data about patients in the database of electronic health records of Digital Learning Medical Environment. So, a diagnostician writes a conclusion on a clinician generates a diagnosis in doc format, which are saved in an electronic health record. Digital Learning Medical Environment analyzes the received files and converts them into universal xlsx-files, which are further used by the system to make a final diagnosis image_123650291(8) Figure 4. ECG transcription results used by Learning Digital Medical Environment for final diagnosis Source: made by Vadim V. Grinshkun, Kristina S. Itinson. image_123650291(9) Figure 5. ECG report converted by Learning Digital Medical Environment into the xlsx format required for diagnosis Source: made by Vadim V. Grinshkun, Kristina S. Itinson. Each electronic health record of a patient contains the following sections: “Patient Data”, “Outpatient Visits”, “Examination Results”, “Hospitalization History”, “Medical Examinations”, “Referrals For Hospitalization”, “Medical Consultations”. The electronic health record stores all doctor's appointments, consultations (in doc and xlsx formats), results of laboratory and instrumental examinations (also in doc and xlsx formats) and hospitalization histories. For example, Figure 4 shows an ECG transcript written by a general practitioner (or a cardiologist) based on the results of an electrocardiogram performed on a patient, in doc format. The ECG data transcription document converted by the Learning Digital Health Environment into xslx format is shown in Figure 5. Conclusion. The main advantage of the Learning Digital Medical Environment is its universality, as it is suitable for a doctor of any specialty, ensuring interaction between them. Thus, the interface of the program is the same for all doctors, so a surgeon, as well as an endocrinologist, will fill in the blocks “Symptoms and Complaints”, “Tests and Examinations”, form a preliminary and then a final diagnosis. The exchange of medical data between doctors takes place in the system using a specific data format (xlsx), which is used by the program to analyze the data and help the doctor to make a final diagnosis formed on the basis of diagnoses-consultations of the necessary doctors and the results of laboratory and instrumental examinations. All examinations performed by a patient, as well as their analyses, are stored in a format that is easy to recognize by the digital system. The Learning Digital Medical Environment will be used in teaching medical students at university, and then by doctors in their professional work and career. Moreover, the Learning Digital Medical Environment will be an essential part of an information educational environment of a medical university.Об авторах
Вадим Валерьевич Гриншкун
Российский университет дружбы народов
Email: vadim@grinshkun.ru
ORCID iD: 0000-0002-8204-9179
академик Российской академии образования, доктор педагогических наук, профессор, профессор кафедры информационных технологий в непрерывном образовании
Российская Федерация, 117198, Москва, ул. Миклухо-Маклая, д. 6Кристина Сергеевна Итинсон
Курский государственный медицинский университет
Автор, ответственный за переписку.
Email: ksitinson@gmail.com
ORCID iD: 0000-0003-3039-9609
кандидат педагогических наук, доцент кафедры иностранных языков
Российская Федерация, 305041, Курск, ул. Карла Маркса, д. 3Список литературы
- Чикунов Н.С., Еленева Ю.Я. Разработка модели системы поддержки принятия врачебных решений // Вестник МГТУ «Станкин». 2023. № 4 (67). С. 112–120.
- Щучка Т.А., Добрин А.В. Подходы к разработке систем поддержки принятия решений в лечебно-диагностическом процессе // Modern Science. 2021. № 5–4. С. 310–311.
- Лонская Л.В., Малютина Т.В. Информационные технологии как условие успешной подготовки медицинских кадров // Современные проблемы науки и образования. 2016. № 2. С. 198.
- Миков Д.А. Проектирование базы данных для медицинской системы поддержки принятия решений // Наука, техника и образование. 2020. № 1 (28). С. 89–95.
- Шагарова И.Х., Морозова Е.С. Система поддержки принятия решения в медицине // Наука в XXI веке: современное состояние, проблемы и перспективы: сборник статей международной научно-практической конференции, Пермь, 25 мая 2019 г.: в 2 частях. Часть 1. Пермь: Аэтерна, 2019. С. 89–91.
- Береснева О.Ю., Сазонов С.В., Конышев К.В., Гребенюк Е.В. Формирование цифровой образовательной среды в рамках практических занятий на кафедре гистологии (опыт Уральского государственного медицинского университета) // Вестник УГМУ. 2023. № 2. С. 73–81.
- Филиппов В.М., Краснова Г.А., Гриншкун В.В. Трансграничное образование // Платное образование. – 2008. – № 6. – С. 36.
- Сабитова Н.Г. Использование электронной информационно-образовательной среды вуза в подготовке студентов медицинского вуза по развитию цифровой грамотности // Современные проблемы науки и образования. 2023. № 1. С. 5.
- Зияутдинова В.С., Воронин И.В. О необходимости экспертных систем поддержки принятия решений в медицине // Современные информационные технологии в управлении качеством: сборник статей V Международной научно-прикладной конференции, Пенза, 28–29 июня 2016 года. Пенза: Приволжский дом знаний, 2016. С. 40–43.
- Лисова Е.В., Колтакова Т.В., Липинский А.В. Особенности систем поддержки принятия решений в медицине // Вестник Воронежского института высоких технологий. 2017. № 2 (21). С. 93–96.
- Курдюмов Д.А., Кашин А.В., Рябов Н.Ю., Новицкий Р.Э., Гусев А.В. Опыт применения технологий искусственного интеллекта для развития профилактического здравоохранения на примере Кировской области // Менеджер здравоохранения. 2023. № 6. С. 62–69.
- Исмухамедова А.М., Увалиева И.М. Анализ систем поддержки принятий решений в медицине // Advanced science: сборник статей международной научно-практической конференции, Пенза, 23 ноября 2017 года: в 3 частях. Часть 1. Пенза: Наука и просвещение, 2017. С. 99–101.
- Фролов С.В., Куликов А.Ю., Остапенко О.А., Стрыгина Е.В. Медицинские системы поддержки принятия решений // Аллея науки. 2018. Т. 3. № 11 (27). С. 900–910.
- Волков Е.Н., Аверкин А.Н. Объяснительный искусственный интеллект в системах поддержки принятия врачебных решений // NeuroNt’2023: IV Международная конференция по нейронным сетям и нейротехнологиям: сборник докладов, Санкт-Петербург, 16 июня 2023 года. СПб.: Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» им. В.И. Ульянова (Ленина), 2023. С. 3–6.
- Тарасов В.Н., Трофимова О.В. Начальный этап к созданию экспертной информационной системы для принятия врачебного решения // Интеллект. Инновации. Инвестиции. 2016. № 5. С. 97–101.
- Грибова В.В., Шалфеева Е.А. Системы и технологии искусственного интеллекта в медицине. Какой набор средств повысит качество решений? // Информационные технологии и системы: труды Восьмой Всероссийской научной конференции с международным участием, Ханты-Мансийск, 17–21 марта 2020 года. Ханты-Мансийск: Югорский научно-исследовательский институт информационных технологий, 2020. С. 40–43.
- Гаджиева Т.А. Применение глобальных информационных систем в медицине // Международный научно-исследовательский журнал. 2019. № 12–1 (90). С. 35–37.
- Григорьев С.Г., Гриншкун В.В. О разработке учебника «Информатизация образования» // Вестник МГПУ. Серия: Информатика и информатизация образования. 2005. № 4. С. 24–28.
Дополнительные файлы










