Simulation of the temperature drift of the laser gyroscope path length

Cover Page

Cite item

Abstract

The authors present the results of modeling the temperature drift of the resonator path length of a laser gyroscope based on a ring helium-neon laser with circular polarization of radiation and a magneto-optical frequency bias based on the Zeeman effect using the MATLAB mathematical package. The algorithm developed and implemented in the MATLAB environment makes it possible to simulate temperature deformations of the path length of a Zeeman laser gyroscope when the configuration of its structural elements changes. This allows to evaluate the quality of the supplied material for the manufacture of the ring laser resonator, as well as to evaluate the total contribution of structural elements to the resulting drift of the perimeter of the Zeeman gyroscope. The model obtained in the work is an analytical tool for additional quality control of the optical glass-ceramic SO-115M, from which the resonator is made, and optimization of the design of the Zeeman laser gyroscope, both locally and comprehensively. This is necessary to increase the efficiency of ring laser perimeter stabilization in the operating temperature range using an active perimeter adjustment system and passive thermal compensation by selecting structural elements with opposite temperature coefficients of linear expansion. The use of the developed model in the production of laser gyroscopes permits to select the structural elements of the Zeeman gyroscope, which significantly increases the time of its continuous operation in a single-mode in a wide temperature range while maintaining the re-quired accuracy for the orientation, stabilization and navigation systems of various aircraft.

About the authors

Yaroslav A. Zubarev

Polyus Research Institute of M.F. Stelmakh

Email: zubyar@mail.ru
ORCID iD: 0000-0002-4492-338X

postgraduate student, lead engineer of lab. 450/4, scientific and production unit 470 (laser gyroscopy)

3 Vvedenskogo St, bldg 1, Moscow, 117342, Russian Federation

Anton O. Sinelnikov

State Research Institute of Instrument Engineering

Author for correspondence.
Email: mr.sinelnikov.a@mail.ru
ORCID iD: 0000-0002-5579-3509
SPIN-code: 2442-7507
Scopus Author ID: 55382453500

Ph.D., Head of the laboratory No. 255-1, sector 250 (developing of gyro inertial units based on laser gyroscopes)

125 Prospekt Mira, Moscow, 129226, Russian Federation

Victoria U. Mnatsakanyan

National Research Technological University “MISIS”

Email: artvik@bk.ru
ORCID iD: 0000-0001-9276-7599
SPIN-code: 8693-8313
Scopus Author ID: 6603501339

Doctor of Technical Sciences, Professor of the Department of Mining Equipment, Transport and Mechanical Engineering

4 Leninskii Prospekt, bldg 1, Moscow, 119049, Russian Federation

References

  1. Hering E, Schönfelder G, Basler S, Biehl K-E, Burkhardt T, Engel T, Feinäugle A, Fericean S, Forkl A, Giebeler C, Hahn B, Halder E, Herfort Ch, Hubrich S, Reichenbach J, Röbel M, Sester S. Geometric quantities. In: Hering E, Schönfelder G. (eds.) Sensors in Science and Technology. Wiesbaden: Springer; 2022. p. 147-372. https://doi.org/10.1007/978-3-658-34920-2_3
  2. Chopra KN. Ring laser gyroscopes. Optoelectronic Gyroscopes: Design and Applications. Singapore: Springer; 2021. https://doi.org/10.1007/978-981-15-8380-3_1
  3. Passaro VMN, Cuccovillo A, Vaiani L, De Carlo M, Campanella CE. Gyroscope technology and applications: a review in the industrial perspective. Sensors. 2017;17(10). https://doi.org/10.3390/s17102284
  4. Cheremisenov GV. A gyrocompass based on a rotating laser gyroscope: experience in the development and experimental results. Gyroscopy and Navigation. 2018;9:29-34. https://doi.org/10.1134/S2075108718010054
  5. Bolotnov AS. Application of the laser gyroscope in free-form inertial systems. Politechnical Student Journal. 2019;10(39). https://doi.org/10.18698/2541-8009-2019-10-533
  6. Corke P. Navigation. Robotics and Control. Cham: Springer; 2022. p. 123-147. https://doi.org/10.1007/978-3-030-79179-7_5
  7. Logashina IV, Chumachenko EN, Bober SA, Aksenov SA. Thermal stress state of a laser-gyroscope housing for use in space. Russian Engineering Research. 2009;29: 751-755. https://doi.org/10.3103/S1068798X09080012
  8. Azarova VV, Golyaev YD, Savelyev II. Zeeman laser gyroscopes. Quantum Electronics. 2015;45(2):171-179.
  9. Golyaev YD, Zapotylko NR, Nedzvetskaya AA, Sinelnikov AO, Tikhmenev NV. Laser gyros with increased time of continuous operation. Proceedings of the 18th Saint Petersburg International Conference on Integrated Navigation Systems (ICINS 2011). St. Petersburg; 2011. p. 53.
  10. Golyaev YuD, Zapotylko NR, Nedzvetskaya AA, Sinelnikov AO. Thermally stable optical cavities for Zeeman laser gyroscopes. Optics and Spectroscopy. 2012;113(2): 227-229. https://doi.org/10.1134/S0030400X12070090
  11. Zubarev YA, Sinelnikov AO, Fetisova NE. A study of the temperature stability of the Zeeman laser gyro ring resonator. 2022 29th Saint Petersburg International Conference on Integrated Navigation Systems (ICINS). IEEE; 2022. p. 1-4. https://doi.org/10.23919/ICINS51784.2022.9815336
  12. Savvova OV, Bragina LL, Petrov DV, Topchii VL, Ryabinin SA. Technological aspects of the production of optically transparent glass ceramic materials based on lithium-silicate glasses. Glass and Ceramics. 2018;75:127-132. https://doi.org/10.1007/s10717-018-0041-6
  13. Kompan TA, Sharov AA. Monitoring of the uniformity of the thermal linear expansion coefficient of large-size optical components. Measurement Techniques. 2009;52:755. https://doi.org/10.1007/s11018-009-9345-9
  14. Filatov YD, Sidorko VI, Kovalev SV, Kovalev VA. Effect of the rheological properties of a dispersed system on the polishing indicators of optical glass and glass ceramics. Journal of Superhard Materials. 2021;43:65-73. https://doi.org/10.3103/S1063457621010032
  15. Wu F, Zhang M-H, Fu X, Guo X, Wang J-L, Wang J-X. Design of ac laser frequency stabilization system for space three-axis mechanical dithering laser gyro. Zhongguo Guanxing Jishu Xuebao. 2017;25(2):265-268.
  16. Cygan A, Lisak D, Masłowski P, Bielska K, Wójtewicz S, Domysławska J, Trawiński RS. Pound-Drever-Hall-locked, frequency-stabilized cavity ring-down spectrometer. The Review of Scientific Instruments. 2011;82(6):063107. https://doi.org/10.1063/1.3595680
  17. Sinelnikov AO, Medvedev AA, Golyaev YD, Grushin ME, Chekalov DI. Thermal zero drifts in magneto-optical Zeeman laser. Gyroscopy and Navigation. 2021; 129(4):308-313. https://doi.org/10.1134/S2075108721040076
  18. Savelyev I, Sinelnikov A. The influence of the pumping current on the Zeeman laser rotation sensors output parameters. Proceedings of the 22nd Saint Petersburg International Conference on Integrated Navigation Systems (ICINS 2015). St. Petersburg; 2015. p. 421-424.
  19. Zubarev YA, Sinelnikov AO, Katkov AA. Contribution of structural elements to the temperature drift of the Zeeman laser angular velocity sensors perimeter. Fizicheskoe Obrazovanie v Vuzah. 2021;27(24):55-58. (In Russ.) https://doi.org/10.54965/16093143_2021_27_S4_55
  20. Soloveva T, Sinelnikov A, Kuznetsov E, Golyaev Y, Kolbas Y. Computer simulation of processes in the resonator length control system of the Zeeman laser gyro. Proceedings of the International Conference on Optoelectronic Information and Computer Engineering (OICE 2022), China, 15 August 2022 (vol. 12308). https://doi.org/10.1117/12.2645990
  21. Khandelwal A, Syed A, Nayak J. Mathematical model of semiconductor fiber ring laser gyroscope. Journal of Optics. 2017;46:8-15. https://doi.org/10.1007/s12596-016-0368-8
  22. Weng J, Bian X, Kou K, Lian T. Optimization of ring laser gyroscope bias compensation algorithm in variable temperature environment. Sensors. 2020;20(2):377. https://doi.org/10.3390/s20020377
  23. Liang H, Ren Q, Zhang D, Zhao X, Guo Y. The temperature compensation method for the laser gyro based on the relevance vector machine. In: Jia Y, Zhang W, Fu Y, Yu Z, Zheng S. (eds.) Proceedings of 2021 Chinese Intelligent Systems Conference. Singapore: Springer; 2022. p. 367-375. https://doi.org/10.1007/978-981-16-6328-4_39
  24. Li Y, Fu L, Wang L, He L, Li D. Laser gyro temperature error compensation method based on NARX neural network embedded into extended Kalman filter. In: Yan L, Duan H, Yu X. (eds.) Advances in Guidance, Navigation and Control. Singapore: Springer; 2022. p. 3309-3320.
  25. Semenov AS, Yakushev IA, Egorov AN. Modeling of technical systems in the MATLAB environment. Modern High-Tech Technologies. 2017;8:56-64. (In Russ.)

Copyright (c) 2023 Zubarev Y.A., Sinelnikov A.O., Mnatsakanyan V.U.

License URL: https://creativecommons.org/licenses/by-nc/4.0/legalcode

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies