Studying the vegetation impact of terrestrial ecosystems on reducing the carbon footprint in in the territory of the Russian Federation
- Authors: Pashkevich M.A.1, Korotaeva A.E.1
-
Affiliations:
- Saint Petersburg Mining University
- Issue: Vol 29, No 4 (2021)
- Pages: 315-327
- Section: Ecology
- URL: https://journals.rudn.ru/ecology/article/view/30862
- DOI: https://doi.org/10.22363/2313-2310-2021-29-4-315-327
Cite item
Full Text
Abstract
Plant communities of terrestrial ecosystems of the Russian Federation are studied in terms of their ability to reduce the carbon footprint as a result of carbon dioxide sequestration. The classification of typical plant communities and the division of the territory depending on the climatic and regional characteristics is given, with further provision of values of the specific absorption capacity of growing plant communities according to the division presented. To assess the biomass of vegetation, as well as its dynamics of change, an analysis of the remote sensing method was carried out as the most preferred method for determining biomass in real time. The characteristics of currently used remote sensing systems, including IKONOS, Quickbird, Worldview, ZY-3, SPOT, Sentinel, Landsat and MODIS are given. The main indicators used for the indexation assessment of vegetation biomass are listed, with subsequent prediction based on them of the efficiency of carbon dioxide uptake by plant communities.
About the authors
Marina A. Pashkevich
Saint Petersburg Mining University
Email: mpash@spmi.ru
ORCID iD: 0000-0001-7020-8219
Dr.Sci. (Eng.), Head of the Department of Geoecology
2 21st Line, Saint Petersburg, 199106, Russian FederationAnna E. Korotaeva
Saint Petersburg Mining University
Author for correspondence.
Email: s205056@stud.spmi.ru
ORCID iD: 0000-0002-0211-6782
postgraduate student
2 21st Line, Saint Petersburg, 199106, Russian FederationReferences
- Di Vita G, Pilato M, Pecorino B, Brun F, D’Amico M. A Review of the role of vegetal ecosystems in CO2 capture. Sustain. 2017;9:1840. http://doi.org/10.3390/SU9101840
- Fyodorov BG, Moiseev BN, Sinyak YuV. Absorption capacity of Russian forests and carbon dioxide emissions by energy facilities. Problemy Prognozirovaniya. 2011; 126(3):127-42. (In Russ.)
- Akita N, Ohe Y. Sustainable forest management evaluation using carbon credits: from production to environmental forests. Forests. 2021;12(8):1-18. http://doi.org/10.3390/f12081016
- Cherepovitsyn AE, Sidorova AE, Smirnova AE. Feasibility of using CO2 sequestration technologies in Russia. Neftegazovoe Delo. 2013;(5):459-473. (In Russ.)
- Krasutsky BV. Absorption of carbon dioxide woods of Chelyabinsk region: modern ecological and economical aspects. Tyumen State Univ. Herald Nat. Resour. Use Ecol. 2018;4(3):57-68. http://doi.org/10.21684/2411-7927-2018-4-3-57-68
- Koroleva NE. The main types of plant communities “Russian Svalbard.” Trudy Karel’skogo Nauchnogo Centra RAN. 2016;(7):3-26. (In Russ.) http://doi.org/10.17076/bg323
- Bykova MV, Alekseenko AV, Pashkevich MA, Drebenstedt C. Thermal desorption treatment of petroleum hydrocarbon-contaminated soils of tundra, taiga, and forest steppe landscapes. Environю. Geochem. Health. 2021;43(6):2331-2346. http://doi.org/10.1007/S10653-020-00802-0
- Kurbatova AI. Analytical review of modern studies of changes in the biotic components of the carbon cycle. RUDN Journal of Ecology and Life Safety. 2020;28(4):428-438. (In Russ.) http://doi.org/10.22363/2313-2310-2020-28-4-428-438
- Zamolodchikov D, Grabovskiy V, Kurc V. Managing the carbon balance of Russia’s forests: past, present and future. Ustojchivoe Lesopol'zovanie. 2014;2(39):23-31. (In Russ.)
- Mancini MS, Galli A, Niccolucci V, Lin D, Bastianoni S, Wackernagel M, Marchettini N. Ecological footprint: refining the carbon footprint calculation. Ecol. Indic. 2016;61: 390-403. http://doi.org/10.1016/j.ecolind.2015.09.040
- Xu D, Wang H, Xu W, Luan Z, Xu X. LiDAR applications to estimate forest biomass at individual tree scale: opportunities, challenges and future perspectives. Forests. 2021;12(5):1-19. http://doi.org/10.3390/f12050550
- Calders K, Jonckheere I, Nightingale J, Vastaranta M. Remote sensing technology applications in forestry and REDD+. Forests. 2020;11(2):10-13. http://doi.org/10.3390/f11020188
- Chen L, Ren C, Zhang B, Wang Z, Xi Y. Estimation of forest above-ground biomass by geographically weighted regression and machine learning with sentinel imagery. Forests. 2018;9(10):1-20. http://doi.org/10.3390/f9100582
- Kumar L, Mutanga O. Remote sensing of above-ground biomass. Remote Sens. 2017;9(9):1-8. http://doi.org/10.3390/rs9090935
- Adamovich TA, Kantor GYa, Ashikhmina TYa, Savinykh VP. The analysis of seasonal and long-term dynamics of the vegetative NDVI index in the territory of the State Nature Reserve “Nurgush”. Teoreticheskaya i Prikladnaya Ecologiya. 2018;(1):18-24. (In Russ.)
- Ferwerda JG, Skidmore AK, Mutanga O. Nitrogen detection with hyperspectral normalized ratio indices across multiple plant species. Int. J. Remote Sens. 2005;26(18):4083-4095. http://doi.org/10.1080/01431160500181044
- Seward A, Ashraf S, Reeves R, Bromley C. Improved environmental monitoring of surface geothermal features through comparisons of thermal infrared, satellite remote sensing and terrestrial calorimetry. Geothermics. 2018;73:60-73. http://doi.org/10.1016/j.geothermics.2018.01.007
- Adão T, Hruška J, Pádua L, Bessa J, Peres E, Morais R, Sousa JJ. Hyperspectral imaging: a review on UAV-based sensors, data processing and applications for agriculture and forestry. Remote Sens. 2017;9(11):1110. http://doi.org/10.3390/rs9111110
- Strizhenok AV, Ivanov AV. Ecological assessment of the current state of environmental components on the territory of the impact of cement production industry. J. Ecol. Eng. 2017;18(6):160-165. http://doi.org/10.12911/22998993/76850
- Kusumaning Asri A, Lee HY, Pan WC, Tsai HJ, Chang HT, Candice Lung SC, Su HJ, Yu CP, Ji JS, Wu CD, Spengler JD. Is green space exposure beneficial in a developing country? Landsc Urban Plan. 2021;215:104226. http://doi.org/10.1016/J.LANDURBPLAN.2021.104226
- John J, Jaganathan R, Dharshan Shylesh DS. Mapping of Soil moisture index using optical and thermal remote sensing. Lect. Notes Civ. Eng. 2022;171:759-767. http://doi.org/10.1007/978-3-030-80312-4_65
- Laefer DF. Harnessing remote sensing for civil engineering: then, now, and tomorrow. Lecture Notes in Civil Engineering. 2020;33:3-30.
- Liu N, Harper RJ, Handcock RN, Evans B, Sochacki SJ, Dell B, Walden LL, Liu S. Seasonal timing for estimating carbon mitigation in revegetation of abandoned agricultural land with high spatial resolution remote sensing. Remote Sens. 2017;9(6):545. http://doi.org/10.3390/rs9060545
- Chevrel S, Bourguignon A. Application of optical remote sensing for monitoring environmental impacts of mining: from exploitation to postmining. L. Surf. Remote Sens. Environ. Risks. Elsevier; 2016. p. 191-220. http://doi.org/10.1016/B978-1-78548-105-5.50006-2
- IUCN and WRI. A guide to the Restoration Opportunities Assessment Methodology (ROAM): assessing forest landscape restoration opportunities at the national or sub-national level. Switzerland: IUCN; 2014.
- Veludo G, Cunha M, Sá MM, Oliveira-Silva C. Offsetting the impact of CO2 emissions resulting from the transport of Maiêutica’s academic campus community. Sustainability. 2021;13:10227. https://doi.org/10.3390/su131810227
- Asner GP, Powell GVN, Mascaro J, Knapp DE, Clark JK, Jacobson J, Kennedy-Bowdoin T, Balaji A, Paez-Acosta G, Victoria E., Secada L., Valqui M, Hughes RF. High-resolution forest carbon stocks and emissions in the Amazon. Proc. Natl. Acad. Sci. USA. 2010;107(38):16738-16742. http://doi.org/10.1073/pnas.1004875107
- Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais Ph, Jackson RB, Pacala SW, McGuire AD, Piao S, Rautiainen A, Sitch S, Hayes D. A large and persistent carbon sink in the world’s forests. Science. 2011;333(6045):988-993. http://doi.org/10.1126/science.1201609
- Bernal B, Murray LT, Pearson TRH. Global carbon dioxide removal rates from forest landscape restoration activities. Carbon Balance Manag. 2018;13(1), 22. https://doi.org/10.1186/s13021-018-0110-8