Investigation of oily wastewater treatment process in a flotation set up with ejection system of aeration with disperser

Cover Page

Cite item

Abstract

The problem of oily wastewater treatment is considered. The main advantages and disadvantages of ejection system of aeration used for flotation treatment are presented. The importance of the use of mathematical model for the flotation time definition is pointed out. The use of ejection system of aeration with disperser is offered for the intensification of flotation oily wastewater treatment is offered. The mathematical model considering peculiarities of bubble characteristic is developed and experimentally verified. The experiments on a laboratory set up devoted to the investigation of the particles disperse characteristics and kinetics of the treatment were carried out. The bubble size without disperser was about 500 μm, while the use of disperser allows to generate two groups of bubbles with size 55 μm and 105 μm. The experiments showed that the use of the model is possible for the description of the treatment process. The comparison of flotation water treatment efficiencies with and without disperser is presented. The use of disperser is mostly effective for the separation pf particles with size 15-35 μm and allows to increase treatment efficiency from 75% to 90%.

About the authors

Ekaterina Sergeevna Antonova

Bauman Moscow State Technical University

Author for correspondence.
Email: kotant@mail.ru

postgraduate student of Ecology and industrial safety department, Bauman Moscow State Technical University

2-nd Baumanskaia str., 5, Build. 1, Moscow, Russia, 105005

References

  1. Alekseev D.V., Nikolaev N.A., Laptev A.G. Kompleksnaya ochistka stokov promyshlennykh predpriyatii metodom struinoi flotatsii [Complex wastewater treatment of industrial plants by jet flotation]. Kazan: KGTU, 2005. 156 p. (in Russ.).
  2. Kuzubova L.I., Morozov S.V. Ochistka neftesoderzhashchikh stochnykh vod: Analit. Obzor [Oily wastewater treatment. Analytical review]. SO RAN GPNTB, NIOKh. Novosibirsk, 1992. 72 р. (in Russ.).
  3. Voronov Yu.V, Kazakov V.D., Tolstoi M.Yu. Struinaya aeratsiya. Nauchnoe izdanie [Jet aeration]. Moscow: Izdatel’stvo Assotsiatsii stroitel’nykh vuzov, 2007. 216 р. (in Russ.).
  4. Grinis L., Lubashevsky N., Ostrovski Y. Influence of the flow rate ratio in a jet pump on the size of air bubbles. World Academy of Science, Engineering and Technology International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering. 2015. Vol. 9. No. 7. P. 1161—1164.
  5. Mandal A. Characterization of gas-liquid parameters in a down-flow jet loop bubble column. Brazilian Journal of Chemical Engineering. 2010. Vol. 27. No. 2. P. 253—264. DOI: 10.1590/ S0104-66322010000200004
  6. Ksenofontov B.S., Antonova E.S. Research of disperse composition of air-and-water mix generated by ejector aeration system during wastewater floatation treatment. Bezopasnost’ v tekhnosfere. 2016. Vol. 5. No. 4. P. 38—44. doi: 10.12737/23760 (in Russ).
  7. Ksenofontov B.S. Flotatsionnaya obrabotka vody, otkhodov i pochvy [Flotation treatment of water, waste and soil]. Moscow: Novye tekhnologii, 2010. 272 p. (in Russ.).
  8. Shawwa A.R., Smith D.W. Dissolved air flotation model for drinking water treatment. Canadian Journal of Civil Engineering. 2000. Vol. 27. No. 2. P. 373—382. doi: 10.1139/l99-071
  9. Edzwald J.K. Developments of high rate dissolved air flotation for drinking water treatment. Journal of Water Supply: Research and Technology-AQUA. 2007. Vol. 56. No. 6-7. P. 399—409. doi: 10.2166/aqua.2007.013
  10. Rubinshtein Yu.V. Kinetika flotatsii [Flotation kinetics]. Moscow: Nedra, 1980. 374 p. (in Russ.).
  11. Polat M. and Chander S. First order flotation kinetics models and methods for estimation of the true distribution of flotation rate constant. International Journal of Mineral Processing. 2000. Vol. 58. P. 145—166. doi: 10.1016/s0301-7516(99)00069-1
  12. Yianatos J.B. Fluid flow and kinetic modelling in flotation related processes: Columns and mechanically agitated cells-a review. Chemical Engineering Research and Design. 2007. 85(A12): P. 1591—1603. doi: 10.1016/s0263-8762(07)73204-5
  13. Antonova E.S. Modeling of wastewater treatment process in a flotation setup with ejection aeration system having a disperser. Bezopasnost’ v tekhnosfere. 2017. Vol. 6. No. 1. P. 43—50. doi: 10.12737/article_590199b9952dc2.23575176 (in Russ.).
  14. Moskvicheva E.V. Moskvicheva A.V., Ignatkina D.O., Sidyakin P.A., Shchitov D.V. Kinetic model of flotation using a mixed reagent on the basis of production waste. Vestnik Volgogradskogo gosudarstvennogo arkhitekturno-stroitel’nogo universiteta. Seriya: Stroitel’stvo i arkhitektura. 2015. No. 40. P. 45—57. (in Russ.).
  15. Deryagin B.V., Dukhin S.S., Rulev N.N. Mikroflotatsiya: Vodoochistka, obogashchenie [Microflotation: Water treatment, concentration]. Moscow: Khimiya, 1986. 112 p. (in Russ.).
  16. Rodrigues R.T., Rubio J. New basis for measuring the size distribution of bubbles. Minerals Engineering. 2003. No. 16 (8). P. 757—765. doi: 10.1016/s0892-6875(03)00181-x

Copyright (c) 2017 Antonova E.S.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies