Stochastic Lagrange Approach to Viscous Hydrodynamics
- Authors: Gliklikh Y.E.1
-
Affiliations:
- Voronezh State University
- Issue: Vol 67, No 2 (2021): Dedicated to the memory of Professor N. D. Kopachevsky
- Pages: 285-294
- Section: Articles
- URL: https://journals.rudn.ru/CMFD/article/view/28866
- DOI: https://doi.org/10.22363/2413-3639-2021-67-2-285-294
Cite item
Full Text
Abstract
The work is a survey of the author’s results with modifications and preliminary information on the use of stochastic analysis on Sobolev groups of diffeomorphisms of a flat n-dimensional torus to describe the motion of viscous fluids (nonrandom ones). The main idea is to replace the covariant derivatives on the groups of diffeomorphisms in the equations introduced by D. Ebin and J. Marsden to describe ideal fluids by the so-called mean derivatives of random processes.
About the authors
Yu. E. Gliklikh
Voronezh State University
Author for correspondence.
Email: yeg@math.vsu.ru
Voronezh, Russia
References
- Партасарати К. Введение в теорию вероятностей и теорию меры. - М.: Мир, 1988.
- Arnol’d V. Sur la ge´ome´trie diffe´rentielle des groupes de Lie de dimension infinie et ses applications a l’hydrodynamique des fluides parfaits// Ann. Inst. Fourier. - 1966. - 16, № 1. - С. 319-361.
- Azarina S. V., Gliklikh Yu. E. Differential inclusions with mean derivatives// Dyn. Syst. Appl. - 2007. - 16, № 1. - С. 49-71.
- Azarina S. V., Gliklikh Yu. E. Stochastic differential equations and inclusions with mean derivatives relative to the past// Int. J. Differ. Equ. - 2009. - 4, № 1. - С. 27-41.
- Ebin D. G., Marsden J. Groups of diffeomorphisms and the motion of an incompressible fluid// Ann. Math. - 1970. - 92, № 1. - С. 102-163.
- Gliklikh Yu. E. Solutions of Burgers-Reynolds and Navier-Stokes equations via stochastic perturbations of inviscid flows// J. Nonlinear Math. Phys. - 2010. - 17, Suppl. 1. - С. 15-29.
- Gliklikh Yu. E. Global and stochastic analysis with applications to mathematical physics. - London: Springer, 2011.
- Gliklikh Yu. E., Zalygaeva M. E. Non-Newtonian fluids and stochastic analysis on the groups of diffeomorphisms// Appl. Anal. - 2015. - 94, № 6. - С. 1116-1127.
- Gliklikh Yu. E., Zalygaeva M. E. On derivation of Oskolkov’s equations for noncompressible viscous Kelvin-Voight fluid by stochastic analysis on the groups of diffeomorphisms// Glob. Stoch. Anal. - 2019. - 6, № 2. - С. 69-77.
- Nelson E. Derivation of the Schro¨dinger equation from Newtonian mechanics// Phys. Rev. - 1966. - 150, № 4. - С. 1079-1085.
- Nelson E. Dynamical theory of Brownian motion. - Princeton: Princeton Univ. Press, 1967.
- Nelson E. Quantum fluctuations. - Princeton: Princeton Univ. Press, 1985.