Class of Keller-Segel chemotactic systems based on Einstein method of Brownian motion modeling
- Authors: Islam R.1, Ibragimov A.1,2
-
Affiliations:
- Texas Tech University
- Institute of Oil and Gas Problems of the RAS
- Issue: Vol 70, No 2 (2024): Functional spaces. Differential operators. Problems of mathematics education
- Pages: 253-277
- Section: Articles
- URL: https://journals.rudn.ru/CMFD/article/view/39910
- DOI: https://doi.org/10.22363/2413-3639-2024-70-2-253-277
- EDN: https://elibrary.ru/YJBKWV
Cite item
Full Text
Abstract
We study the movement of the living organism in a band form towards the presence of chemical substrates based on a system of partial differential evolution equations. We incorporate Einstein’s method of Brownian motion to deduce the chemotactic model exhibiting a traveling band. It is the first time that Einstein’s method has been used to motivate equations describing the mutual interaction of the chemotactic system. We have shown that in the presence of limited and unlimited substrate, traveling bands are achievable and it has been explained accordingly. We also study the stability of the constant steady states for the system. The linearized system about a constant steady state is obtained under the mixed Dirichlet and Neumann boundary conditions. We are able to find explicit conditions for linear instability. The linear stability is established with respect to the L2-norm, H1-norm, and L∞-norm under certain conditions.
About the authors
R. Islam
Texas Tech University
Author for correspondence.
Email: akif.ibraguimov@ttu.edu
Lubbock, USA
A. Ibragimov
Texas Tech University; Institute of Oil and Gas Problems of the RAS
Email: akif.ibraguimov@ttu.edu
Lubbock, USA; Moscow, Russia
References
- Adler J. Effect of amino acids and oxygen on chemotaxis in escherichia coli// J. Bacteriology.- 1966.- 92, № 1.- С. 121-129.
- Belopolskaya Y.I. Stochastic models of chemotaxis processes// J. Math. Sci. (N.Y.). - 2020.- 251, № 1.- С. 1-14.
- Carrillo J.A., Li J., Wang Zh. Boundary spike-layer solutions of the singular Keller-Segel system: existence and stability// Proc. Lond. Math. Soc. (3).- 2021.-122, № 1. -С. 42-68.
- Chavanis P.H. A stochastic Keller-Segel model of chemotaxis// Commun. Nonlinear Sci. Numer. Simul. - 2010.-15, № 1.- С. 60-70.
- Davis P.N., van Heijster P., Marangell R. Absolute instabilities of travelling wave solutions in a Keller- Segel model// Nonlinearity.- 2017.-30, № 11.-С. 4029-4061.
- Einstein A. Uber die von der molekularkinetischen theorie der warme geforderte bewegung von in ruhenden flussigkeiten suspendierten teilchen// Ann. Phys. Leipzig.-1905.- 322.- С. 549-560.
- Fu S., Huang G., Adam B. Instability in a generalized multi-species Keller-Segel chemotaxis model// Comput. Math. Appl. -2016.- 72, № 9. -С. 2280-2288.
- Gobbetti M., De Angelis M., Di Cagno R., Minervini F., Limitone A. Cell-cell communication in food related bacteria// Int. J. Food Microbiology.-2007.-120, № 1-2.-С. 34-45.
- Ibragimov A., Peace A. Light driven interactions in spatial predator-prey chemotaxis model in the presence of chemical agent// J. Pure Appl. Math. - 2022.- 2, № 1.- С. 222-244.
- Keller E.F., Segel L.A. Traveling bands of chemotactic bacteria: A theoretical analysis// J. Theor. Biol.- 1971.-30, № 2.- С. 235-248.
- Li Yi, Li Yong, Wu Y., Zhang H. Spectral stability of bacteria pulses for a Keller-Segel chemotactic model// J. Differ. Equ. - 2021.- 304.-С. 229-286.
- Qiao Q. Traveling waves and their spectral instability in volume-filling chemotaxis model// J. Differ. Equ. - 2024.-382.- С. 77-96.
- Romanczuk P., Erdmann U., Engel H., Schimansky-Geier L. Beyond the Keller-Segel model: Microscopic modelling of bacterial colonies// Eur. Phys. J. Spec. Topics.-2008.-157.- С. 61-77.
- Skorokhod A. Basic principles and applications of probability theory.- Berlin-Heidelberg: Springer, 2005.
- Stevens A. The derivation of chemotaxis equations as limit dynamics of moderately interacting stochastic many-particle systems// SIAM J. Appl. Math.- 2000.- 61, № 1.- С. 183-212.
- Stevens A., Othmer H.G. Aggregation, blowup, and collapse: the abc’s of taxis in reinforced random walks// SIAM J. Appl. Math. -1997.-57, № 4. -С. 1044-1081.
- Tindall M., Maini P., Porter S., Armitage J. Overview of mathematical approaches used to model bacterial chemotaxis II: bacterial populations// Bull. Math. Biol.- 2008.- 70, № 6.- С. 1570-607.
- Tomasevic M., Talay D. A new McKean-Vlasov stochastic interpretation of the parabolic-parabolic Keller-Segel model: The one-dimensional case// Bernoulli.-2020.- 26, № 2.-С. 1323-1353.
- Wang Q., Yan J., Gai C. Qualitative analysis of stationary Keller-Segel chemotaxis models with logistic growth// Z. Angew. Math. Phys.- 2016.- 67, № 3.- 51.