On the Theory of Entropy Solutions of Nonlinear Degenerate Parabolic Equations
- Authors: Panov E.Y.1
-
Affiliations:
- Novgorod State University
- Issue: Vol 66, No 2 (2020): Proceedings of the Crimean Autumn Mathematical School-Symposium
- Pages: 292-313
- Section: New Results
- URL: https://journals.rudn.ru/CMFD/article/view/24429
- DOI: https://doi.org/10.22363/2413-3639-2020-66-2-292-313
Cite item
Full Text
Abstract
We consider a second-order nonlinear degenerate parabolic equation in the case when the flux vector and the nonstrictly increasing diffusion function are merely continuous. In the case of zero diffusion, this equation degenerates into a first order quasilinear equation (conservation law). It is known that in the general case under consideration an entropy solution (in the sense of Kruzhkov-Carrillo) of the Cauchy problem can be non-unique. Therefore, it is important to study special entropy solutions of the Cauchy problem and to find additional conditions on the input data of the problem that are sufficient for uniqueness. In this paper, we obtain some new results in this direction. Namely, the existence of the largest and the smallest entropy solutions of the Cauchy problem is proved. With the help of this result, the uniqueness of the entropy solution with periodic initial data is established. More generally, the comparison principle is proved for entropy suband super-solutions, in the case when at least one of the initial functions is periodic. The obtained results are generalization of the results known for conservation laws to the parabolic case.
About the authors
E. Yu. Panov
Novgorod State University
Author for correspondence.
Email: eugeny.panov@novsu.ru
Velikiy Novgorod
References
- Кружков С. Н. Квазилинейные уравнения первого порядка со многими независимыми переменными// Мат. сб.- 1970.- 81, № 2. - С. 228-255.
- Кружков С. Н., Панов Е. Ю. Консервативные квазилинейные законы первого порядка с бесконечной областью зависимости от начальных данных// Докл. АН СССР. - 1990. - 314, № 1. - С. 79-84.
- Панов Е. Ю. К теории обобщенных энтропийных суби суперрешений задачи Коши для квазилинейного уравнения первого порядка// Дифф. уравн. - 2001. - 37, № 2. - С. 252-259.
- Панов Е. Ю. О наибольших и наименьших обобщенных энтропийных решениях задачи Коши для квазилинейного уравнения первого порядка// Мат. сб. - 2002. - 193, № 5. - С. 95-112.
- Панов Е. Ю. К теории обобщенных энтропийных решений задачи Коши для квазилинейного уравнения первого порядка в классе локально суммируемых функций// Изв. РАН. - 2002. - 66, № 6. - С. 91- 136.
- Andreianov B. P., Be´ nilan Ph., Kruzhkov S. N. L1-theory of scalar conservation law with continuous flux function// J. Funct. Anal. - 2000. - 171, № 1. - С. 15-33.
- Andreianov B. P., Igbida N. On uniqueness techniques for degenerate convection-diffusion problems// Int. J. Dyn. Syst. Differ. Equ. - 2012. - 4, № 1-2. - С. 3-34.
- Andreianov B. P., Maliki M. A note on uniqueness of entropy solutions to degenerate parabolic equations in RN // NoDEA: Nonlinear Differ. Equ. Appl. - 2010. - 17, № 1. - С. 109-118.
- Be´ nilan Ph., Kruzhkov S. N. Conservation laws with continuous flux function// NoDEA: Nonlinear Differ. Equ. Appl. - 1996. - 3. - С. 395-419.
- Carrillo J. Entropy solutions for nonlinear degenerate problems// Arch. Ration. Mech. Anal. - 1999. - 147. - С. 269-361.
- Kruzhkov S. N., Panov E. Yu. Osgood’s type conditions for uniqueness of entropy solutions to Cauchy problem for quasilinear conservation laws of the first order// Ann. Univ. Ferrara Sez. VII Sci. Mat. - 1994. - 40.- С. 31-54.
- Maliki M., Toure´ Uniqueness of entropy solutions for nonlinear degenerate parabolic problem// J. Evol. Equ. - 2003. - 3, № 4. - С. 603-622.
- Panov E. Yu. On the Cauchy problem for scalar conservation laws in the class of Besicovitch almost periodic functions: Global well-posedness and decay property// J. Hyperbolic Differ. Equ. - 2016. - 13.- С. 633-659
- Panov E. Yu. To the theory of entropy sub-solutions of degenerate nonlinear parabolic equations// Math. Methods Appl. Sci. - 2020. - doi: 10.1002/mma.6262