Применимость тензометрических методов для экспериментального определения нагруженности строительных, дорожных и сельскохозяйственных машин, агрегатируемых с тракторами

Обложка

Цитировать

Полный текст

Аннотация

Силовая нагруженность строительных, дорожных и сельскохозяйственных машин определяется во время экспериментально-производственных испытаний с использованием датчиков усилий. Цель исследования - совершенствование методов экспериментального определения горизонтальных усилий, передаваемых в мобильных агрегатах с применением тензометрических датчиков, совмещаемых с элементами крепления технологических машин. Рассмотрены напряженно-деформируемое состояние и деформации измерительных тензорезисторов при различных схемах их расположения на тензометрических пальцах круглого сечения. При определении горизонтальной нагрузки на транспортное средство с использованием предварительно калибруемых тензометрических пальцев экспериментально установлено, что упомянутые тензорезисторы могут дополнительно реагировать и на вертикальную нагрузку, что приводит к появлению систематических погрешностей при оценке горизонтальной нагрузки. Для устранения этого явления предложено перед проведением основной калибровки датчиков горизонтального усилия предварительно определить положение, при котором калибруемый тензодатчик не будет реагировать на вертикальное усилие путем его поворота относительно продольной оси с последующим обеспечением фиксации в этом положении. Влияние осевых усилий на тензометрические пальцы, воспринимаемых тензорезисторами, также может приводить к искажению поля напряжений в теле тензопальца, учет влияния которого на тензометрические пальцы требует проведения дополнительных экспериментальных исследований.

Полный текст

1. Introduction Operating stress and efficiency of construction, road and agricultural machines [1; 2] are determined during experimental and factory tests, for which they can be equipped with force [3; 4], displacement, acceleration sensors, etc., which are part of data measurement systems [5-7]. The use of multi-purpose measuring instruments for determining operating stress of elements of such implements [8] changes their operating interaction pattern, which introduces errors in the measurement of forces, in particular, horizontal forces, the most important for traction and energy calculation. Such data measurement systems for assessing operating stress of various joints of mobile implements are based on fundamental methods of engineering mechanics [9], theory and experimental evaluation of stress of shells [10; 11] and other experimental and theoretical methods [12-14]. For experimental determination of operating stress of construction, road and agricultural machines, equipment, tractors, the use of special rig equipment [15], soil channels [12], the application of similarity theory methods to determine traction resistance of the attached technological machine [16], artificial intelligence (AI) algorithms [17] and other modern approaches [18; 19] are known. However, when measuring devices are combined with structural elements of the implements, negative effects may occur not only due to anisotropy of their materials [20; 21], but also as a result of the geometric inaccuracy of attaching strain gauges on the surfaces of force-measuring elements [18]. Therefore, experimental methods of determination of operating stress of construction and agricultural tractor attachments remain insufficiently investigated, including in terms of the applicability of force sensors combined with the elements of attachment of the implements, and require further experimental research and theoretical substantiation. 2. Methods To measure internal forces, the strain gauge [22], which is a thin metal lattice inside a dielectric (Figure 1, a), has become widespread. Strain gauges are glued onto the tested part (one, two or four functional) and are connected by a bridge circuit according to Figure 1, b. When the resistance of resistors R1, …, R4 is equal, the voltage between points C and D will be 0 and, accordingly, the current flowing along the diagonal С - D will also be equal to zero. a b Figure 1. Structure and connection of strain gauges: a - strain gage conductors; b - bridge connection diagram S o u r c e: made by A.A. Karsakov When the tested part is loaded, it is deformed (stretched or compressed) and the strain gauges are deformed, which leads to a change in their electrical resistance. By measuring the value of current flowing along the diagonal С - D or the voltage in it, it is possible to determine strain ε of the part, as well as normal stress σ ε= ⋅Е, (1) where σ is the normal stress of the part, N/m2; ε is the strain of the part; Е is the normal elastic modulus of the material of the part, N/m2. The arrangement of strain gauges on an axially loaded part is shown in Figure 2. Figure 2. Arrangement of strain gauges on a part under axial loading S o u r c e: made by A.A. Karsakov In pure axial tension, strain gauges R1 and R4, fixed strictly parallel to the longitudinal axis of the bar, are stretched during loading with force P, and their resistance will increase. In turn, strain gauges R2 and R3, which are oriented perpendicular to the longitudinal axis of the bar, are partially compressed, and their resistance will decrease. At a sufficient distance from the point of application of force P, the stresses at any point of the cross-section of the bar will be the same and will be determined by the expression σ = Р / А, where Р is the magnitude of the applied force, N; А is the cross-sectional area, m2. Strain ε: (2) ε σ= ⋅E, (3) where E is the normal elastic modulus, m2/N. The case of loading a bar by moment M (Figure 3) is considered below. S o u r c e: made by A.A. Karsakov In the case of bending of the bar under moment M, strain gauges R1 and R4 are fixed parallel to the longitudinal axis of the bar. In the process of loading, their resistance will decrease, while gauges R2 and R3 are parallel to the longitudinal axis of the bar from the opposite side and their resistance will increase. The stresses at the gauge attachment points are determined by (4), and they will be the same across the top and bottom faces. σ = М ⋅Y , (4) Jz where Jz is the moment of inertia of the cross-section with respect to Z-axis; Y is the coordinate of the point of measuring normal stress; M is the magnitude of the bending moment. 3. Results and Discussion Circular strain gauge pins are sometimes used as force sensors during testing, installed at the joints of individual parts (Figure 4). The transferred forces can act in three directions: horizontally PH, vertically PV and laterally PL, whereas only one, for example horizontal PH, is required (Figure 5). For this purpose, the longitudinal axes of the strain gauges must be parallel to each other and lie in the same centerline plane and be located at the same distance “a” from the supports. Figure 4. Diagram of forces acting on the strain gauge pin when installed at the junction of the parts S o u r c e: made by A.F. Rogachev The distribution of normal stress from horizontal PH and vertical PV forces is shown in Figure 5. The highest stress from the horizontal force PH will be in the locations where the strain gauges are attached (points 1 and 2). In these locations, the stress from the vertical force PV is equal to zero, while the vertical force PV will not affect the readings from the horizontal force PH. The lateral force PL will cause the same strain of all four strain gauges, which will also not affect the readings from the horizontal force PH. At the same time, in reality it is difficult to provide geometrically accurate attachment of the strain gauges. In addition, due to the anisotropy of the strain gauge pin material caused by preliminary thermal treatment and elastoplastic deformation, its physical properties vary at different points, which leads to changes and distortion of the real stress diagram. This requires correcting the axial positioning of the strain gauge pin in the supports. For this purpose, a mark is made on the end of the pin, and the pin is installed in the rig such that the mark is positioned vertically. The strain gauge pin is loaded vertically. Then it is rotated several times around the longitudinal axis ϕ and a graph of the relationship between of the mV signal and the angle of rotation ϕ is plotted (Figure 6). Figure 5. Distribution of normal stresses from horizontal PH and vertical PV forces S o u r c e: made by A.A. Karsakov Figure 6. Plot of relationship between mV signal and rotation angle ϕ S o u r c e: made by A.A. Karsakov Figure 7. Installation of the strain gauge pin Figure 8. Method of adjusting the angle in the found position and locking it against rotation of installation of the strain gauge pin in the “zero” relative to the longitudinal axis position using a pull bar of variable length S o u r c e: made by A.A. Karsakov S o u r c e: made by A.A. Karsakov After that, the position of the strain gauge pin at which the signal is equal to zero is found. In this position, it is installed in the actual rig and secured against rotation (Figure 7). Another way of correcting the angle of the strain gauge to the “zero” position is shown in Figure 8. The pin is mounted in the support with the possibility of its rotation around the longitudinal axis. A lever is welded to the pin and an additional pin is welded to the support. A pull bar of variable length is installed between these two pins. By changing the length of this bar, the required “zero” position is found. In addition to the investigated influence of vertical load on strain gauge pins when determining horizontal forces, it is possible that axial forces are also picked up by the strain gauges. Their emergence is possible during measurements in factory conditions and leads to distortion of the stress field in the strain gage pin body. This can cause additional error when measuring the horizontal force, which is difficult to estimate by numerical methods, such as FEM [23; 24]. In this regard, taking into account the influence of axial forces on strain gauge pins requires additional experimental and theoretical studies, including the use of various modern methods [25]. Thus, technical solutions allowing to practically eliminate the revealed undesirable phenomenon of mutual influence of different components of the total load acting on the strain gauge pin, when measuring the horizontal load, are proposed. 4. Conclusion The conducted study allowed to draw the following conclusions about the aspects of application of strain gauge devices for determination of operating stress of implements. 1. During the experimental determination of the horizontal load on the vehicle from the side of the implement, using pre-calibrated strain gauge pins, it was found that the strain gauges of the pins can additionally react to the vertical load, which leads to the emergence of systematic errors in the estimation of the horizontal load. 2. To eliminate this disadvantage, it was proposed that before the main calibration of the sensors of the horizontal force, which is transferred to the transport machine from the side of the implement [26], it is necessary to pre-determine the position at which the calibrated strain gauge device will not react to the vertical force. This is performed by rotating it relative to the longitudinal axis and ensuring its fixation in this position afterwards (Russian Federation patent No. 2800400). 3. The influence of axial forces on strain gauge pins, which may emerge during measurements and are picked up by the strain gauges, leads to distortion of the stress field in the body of the strain gauge pin. This may cause additional error when measuring the horizontal force, which is difficult to estimate by numerical methods. In this regard, taking into account the influence of axial forces on strain gauge pins requires additional experimental studies.
×

Об авторах

Алексей Фруминович Рогачев

Волгоградский государственный аграрный университет; Волгоградский государственный технический университет

Автор, ответственный за переписку.
Email: rafr@mail.ru
ORCID iD: 0000-0002-3077-6622
SPIN-код: 8413-5020

доктор технических наук, профессор кафедры математического моделирования и информатики, Волгоградский государственный аграрный университет; профессор кафедры информационных систем в экономике, Волгоградский государственный технический университет

Российская Федерация, 400002, Волгоград, пр. Университетский, 26; Российская Федерация, 400005, Волгоград, пр. им. Ленина, 28

Анатолий Андреевич Карсаков

Волгоградский государственный аграрный университет

Email: karsakov.anatol.57@gmail.com
ORCID iD: 0000-0002-0573-5829
SPIN-код: 9755-0706

кандидат технических наук, заведующий лабораторией кафедры технических систем в АПК

Российская Федерация, 400002, Волгоград, пр. Университетский, 26

Анатолий Александрович Мартынов

Волгоградский государственный аграрный университет

Email: azazkabest@gmail.com
ORCID iD: 0009-0004-6031-8528

студент инженерно-технологического факультета

Российская Федерация, 400002, Волгоград, пр. Университетский, 26

Список литературы

  1. Черемных С.В. Теоретико-экспериментальное моделирование деформирования цилиндрической оболочки из стали 45 при сложном нагружении // Строительная механика инженерных конструкций и сооружений. 2022. Т. 18. №. 2. С. 150–160. http://doi.org/10.22363/1815-5235-2022-18-2-150-160 EDN: AYLPZU
  2. Rogachev A., Korsakov A. Experimental Determination of the Load of Mounted Working Bodies, Aggregated with Tractors // XIV International Scientific Conference “INTERAGROMASH 2021”. Lecture Notes in Networks and Systems / A. Beskopylny, M. Shamtsyan (eds.). Springer, Cham. 2022. Vol. 247. P. 315–324. http://doi.org/10.1007/978-3-030-809461_32 EDN: WRVAZE
  3. Kaner B. Investigation of using strain gauge in tension, torsion and bending experiments // Sigma Journal of Engineering and Natural Sciences. 2024. P. 755–766. http://doi.org/10.14744/sigma.2024.00065 EDN: QYYYMF
  4. Карсаков А.А., Рогачев А.Ф., Косульников Р.А., Гапич Д.С. Тензометрическая плита, преимущественно для измерения горизонтального усилия на навесное сельскохозяйственное орудие / Патент на изобретение RU 2748865 C1, 01.06.2021. Заявка № 2020132788 от 05.10.2020. EDN: LICFOM
  5. Антонов А.С. Программная часть, фундаментальная и организационная структура программно-аппаратного комплекса для обеспечения безопасности возводимых гидротехнических и гидроэнергетических сооружений // Строительная механика инженерных конструкций и сооружений. 2020. Т. 16. № 6. С. 465–471. http://doi.org/10.22363/18155235-2020-16-6-465-471 EDN: PECKWX
  6. Buffia G., Manciola P., De Lorenzis L., Cavalagli N., Comodini F. Calibration of finite element models of concrete arch-gravity dams using dynamical measures: the case of Ridracoli // Procedia Engineering. 2017. Vol. 199. P. 110–115. http://doi.org/10.1016/j.proeng.2017.09.169
  7. Yakupov S.N., Gumarov G.G., Yakupov N.M. Experimental-theoretical method for assessing the stiffness and adhesion of the coating on a spherical substrate // Structural Mechanics of Engineering Constructions and Buildings. 2023. Vol. 19. No. 6. P. 577–582. http://doi.org/10.22363/1815-5235-2023-19-6-577-582 EDN: TMWUVY
  8. Zylev V.B., Platnov P.O. Models equivalent in damping in experiments for determining the parameters of internal friction in materials // Structural Mechanics of Engineering Constructions and Buildings. 2022. Vol. 18. No. 1. P. 45–53. http://doi.org/10.22363/1815-5235-2022-18-1-45-53 EDN: JQOUKV
  9. Выборнов А.П., Бигус Г.А., Ремизов А.Л. Использование инженерной механики разрушения при диагностировании технического состояния потенциально опасных технических устройств // Сварочное производство. 2023. № 6. С. 46–49. http://doi.org/10.34641/SP.2023.1063.6.052 EDN: MVVZFY
  10. Imomqulov U., Mamasoliyeva S., Soataliyev D., Imomqulov Sh., Idrisov H. The results of determining the parameters of the shell device in experimental research // E3S WEB OF CONFERENCES. IX International Conference on Advanced Agritechnologies, Environmental Engineering and Sustainable Development. EDP Sciences — Web of Conferences, 2024. Article no. 06018. http://doi.org/10.1051/e3sconf/202448606018 EDN: QOLTFL
  11. Travush V.I., Karpenko N.I., Kolchunov Vl.I., Kaprielov S.S., Demyanov A.I., Bulkin S.A., Moskovtseva V.S. Results of experimental studies of high-strength fiber reinforced concrete beams with round cross-sections under combined bending and torsion // Structural Mechanics of Engineering Constructions and Buildings. 2020. Vol. 16. No. 4. P. 290–297. http://doi.org/10.22363/1815-5235-2020-16-4-290-297 EDN: JXJMCG
  12. Рогачев А.Ф., Карсаков А.А., Косульников Р.А., Гапич Д.С. Устройство для определения усилий, действующих на рабочий орган сельскохозяйственных машин со стороны почвы, преимущественно в почвенном канале / Патент на изобретение RU 2769848 C1, 07.04.2022. Заявка № 2021107559 от 22.03.2021. EDN: OMUPRF
  13. Zubchaninov V.G. On the main hypotheses of the general mathematical theory of plasticity and the limits of their applicability // Mechanics of Solids. 2020. Vol. 55. No. 6. P. 820–826. http://doi.org/10.3103/S0025654420060163 EDN: OPZZJZ
  14. Demyanov A., Kolchunov Vl. The dynamic loading in longitudinal and transverse reinforcement at instant emergence of the spatial сrack in reinforced concrete element under the action of a torsion with bending // Journal of Applied Engineering Science. 2017. Vol. 15. P. 377–382. http://doi.org/10.5937/jaes15-14663 EDN: UXTBCX
  15. Макаревич Г.В., Сальникова И.А., Сасковец В.В., Поволанский Э.И. Стенд для изучения трения о грунт // Трение и износ. 2024. Т. 45. № 2. С. 151–159. http://doi.org/10.32864/0202-4977-2024-45-2-151-159 EDN: AKNHVJ
  16. Турдалиев В.М., Косимов А.А., Шералиев И.И. Определения тягового сопротивления посевной машины на основании теории подобия // Вестник машиностроения. 2024. Т. 103. № 9. С. 733–738. http://doi.org/10.36652/00424633-2024-103-9-733-738 EDN: EOVGSJ
  17. Пестряков Е.В., Катаев Ю.В., Костомахин М.Н., Петрищев Н.А., Саяпин А.С. Контроль технического состояния энергонасыщенных тракторов с использованием алгоритмов искусственного интеллекта // Техника и оборудование для села. 2024. № 9 (327). С. 2–5. http://doi.org/10.33267/2072-9642-2024-9-2-5 EDN: IXDPJD
  18. Якупов С.Н., Киямов Х.Г., Якупов Н.М., Хасанова Л.И., Бикмухамметов И.И. Эффект концентрации напряжений в стержне прямоугольного сечения в области крепления от продольных усилий // Строительная механика инженерных конструкций и сооружений. 2018. Т. 14. № 6. С. 451–458. http://doi.org/10.22363/1815-5235-2018-14-6451-458 EDN: YUZVQL
  19. Yakupov S.N., Kiyamov H.G., Yakupov N.M. Modeling a synthesized element of complex geometry based upon threedimensional and two-dimensional finite elements // Lobachevskii Journal of Mathematics. 2021. Vol. 42. No. 9. P. 2263–2271. http://doi.org/10.1134/S1995080221090316 EDN: XPCCXJ
  20. Gultyaev V.I., Alekseev A.A., Savrasov I.A., Subbotin S.L. Experimental verification of the isotropy postulate on orthogonal curved trajectories of constant curvature. Lecture Notes in Civil Engineering. 2021. Vol. 151. P. 315–321. http://doi.org/10.1007/978-3-030-72910-3_46 EDN: XRBBDH
  21. Zubchaninov V.G., Alekseeva E.G., Alekseev A.A., Gultiaev V.I. Modeling of elastoplastic steel deformation in twolink broken trajectories and delaying of vector and scalar material properties // Materials Physics and Mechanics. 2019. Vol. 42. No. 4. P. 436–444. http://doi.org/10.18720/MPM.4242019_8 EDN: OUYLPE
  22. Рогачев А.Ф., Карсаков А А., Косульников Р.А., Гапич Д.С. Устройства для экспериментального определения нагруженности рабочих органов МТА методом тензометрирования // Научная жизнь, 2020. Т. 15. Вып. 7. С. 980–990. http://doi.org/10.35679/1991-9476-2020-15-7-980-990 EDN: CYSCTJ
  23. Клочков Ю.В., Пшеничкина В.А., Николаев А.П., Вахнина О.В., Клочков М.Ю. Четырехугольный конечный элемент в смешанной формулировке МКЭ для расчета тонких оболочек вращения // Строительная механика инженерных конструкций и сооружений. 2023. Т. 19. № 1. С. 64–72. http://doi.org/10.22363/1815-5235-2023-19-1-64-72 EDN: FVOZAA
  24. Celik H.K., Akinci I., Caglayan N., Rennie A.E.W. Structural strength analysis of a rotary drum mower in transportation position rennie // Applied Sciences (Switzerland). 2023. Vol. 13. No. 20. P. 11338. http://doi.org/10.3390/app132011338 EDN: KJGVJZ
  25. Borovkov A.I., Vafaeva Kh.M., Vatin N.I., Ponyaeva I. Synergistic integration of digital twins and neural networks for advancing optimization in the construction industry: A comprehensive review // Construction Materials and Products. 2024. Vol. 7. No. 4. Article no. 7. http://doi.org/10.58224/2618-7183-2024-7-4-7 EDN: DCJSJC
  26. Рогачев А.Ф., Карсаков А.А., Косульников Р.А., Коновалов П.В. Способ градуировки тензометрических пальцев круглого сечения для замера горизонтального усилия / Патент на изобретение RU 2800400 C1, 21.07.2023. Заявка № 2023107608 от 28.03.2023. EDN: BGSPUZ

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Рогачев А.Ф., Карсаков А.А., Мартынов А.А., 2025

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial 4.0 International License.