Analysis of the field studies of the foundation deformations and total draft of the Boguchansk HPP concrete dam

Cover Page

Cite item

Abstract

The results of data analysis from complex field studies of vertical deformations of the rock base near-contact layer and full settling Boguchanskaya HPP concrete dam sections in order to determine the state of contact of the foot of the concrete dam with the rock base are presented. The purpose of the study is to control the state of the contact of the concrete dam foot with the foundation based on the analysis of a set of field studies of the vertical deformations of the near-contact zone of the foundation of the concrete dam sections and the total draft of the sections of the concrete dam to justify the stability of the concrete dam sections. In order to control the vertical deformations of the near-contact zone of the rock foundation, string control and measuring equipment (displacement sensors PLPS-10) was installed. The total draft of the concrete dam sections is measured by means of ceiling marks installed in the grout gallery. Analysis of the field data on total drafts of concrete dam sections and vertical deformations of the near-contact section of the rock foundation showed that the contact joint between the foot of the concrete dam sections and the foundation is in vertical compression. The results of the analysis of the available data of complex studies of vertical deformations of the near-contact layer of the rock foundation and the total draft of the concrete dam sections made it possible to substantiate the stability of the concrete dam sections.

About the authors

Sergey V. Yuriev

Institute “Hydroproject” JSC

Author for correspondence.
Email: yurievs@mail.ru
ORCID iD: 0000-0002-2609-2711

Deputy Chief Engineer

2 Volokolamskoye Shosse, Moscow, 125993, Russian Federation

References

  1. Kalustyan E.S. Geomechanics in dam engineering. Moscow: Energoatomizdat Publ.; 2008. (In Russ.)
  2. Vavilova V.K., Yuriev S.V. Ensuring the reliability of Boguchanskaya HPP concrete dam based on the control of the contact joint state from the upper face side. Scientific and Technical Journal on Construction and Architecture. 2013;(7):157-167. (In Russ.)
  3. Yuriev S.V. The state of the concrete dam foundation according to field observations in harsh climatic conditions. Monitoring of Natural and Technogenic Processes During Mining: Collection of Reports of the All-Russian Scientific and Technical Conference with International Participation. St. Petersburg; 2013. p. 312-318. (In Russ.)
  4. Lisichkin S.E., Rubin O.D., Yuriev S.V. Status control of the near-contact zone of the base of a concrete dam on the basis of the field observation data. News of Higher Educational Institutions. Construction. 2019;(4):74-81. (In Russ.)
  5. Wang Sh., Gu Ch., Bao T. Safety Monitoring Index of high concrete gravity dam based on failure mechanism of instability. Mathematical Problems in Engineering. 2013. Article 732325. https://doi.org/10.1155/2013/732325
  6. Pekhtin V.A., Volinchikov A.N., Mgalobelov Yu.B., Yuriev S.V. Estimation of concrete and rock-fill dam’s reliability of Boguchany HPP before first reservoir impoundment. 25th Congress ICOLD. Stavanger; 2015. p. 265-267.
  7. Renaud S., Saichi T., Bouaanani N. Roughness Effects on the Shear strength of concrete and rock joints in dams based on experimental data. Rock Mechanics and Rock Engineering. 2019;52:3867-3888.
  8. Pereira R., Lopes Batista A., Neves L.C., Lemos J.V. Deduction of ultimate equilibrium limit states for concrete gravity dams keyed into rock mass foundations based on large displacement analysis. Structures. 2022;38:1180-1190.
  9. Chen S., Gu C., Lin C. Multi-kernel optimized relevance vector machine for probabilistic prediction of concrete dam displacement. Engineering with Computers. 2021;37:1943-1959.
  10. Li W., Wu W., Zhang J. Numerical stability analysis of the dam foundation under complex geological conditions at great depth: a case study of Kala Hydropower Station, China. Frontiers in Physics. 2000;9:808840. https://doi.org/10.3389/fphy.2021.808840
  11. Dong W., Song S., Zhang B., Yang D. SIF-based fracture criterion of rock-concrete interface and its application to the prediction of cracking paths in gravity dam. Engineering Fracture Mechanics. 2019;221:106686. https://doi.org/10.1016/j.engfracmech.2019.106686
  12. Bista D., Sas G., Johansson F., Lia L. Roughness influence of location of large-scale asperity on shear strength of concrete-rock interface under eccentric load. Journal of Rock Mechanics and Geotechnical Engineering. 2020;12(3):449-460.
  13. Sowab D., Carbajal C., Breulc P., Peyras L., Rivard P., Bacconnet C., Ballivy G. Modeling the spatial variability of the shear strength of discontinuities of rock masses: application to a dam rock mass. Engineering Geology. 2017;220:133-143. https://doi.org/10.1016/J.ENGGEO.2017.01.023
  14. Coubard G., Deveze G., Vergniault C., Zammout G., Laugier F., Peyras L., Carvajal C., Bost M., Rajot J., Rivard P., Ballivy G., Sow D., Rullière A., Breul P., Bacconnet C., Quirion M. Best estimation of mechanical properties at the concrete-to-rock interface and at the discontinuities of rock foundations for gravity dams. 26th International Congress on Large Dams, 4-6 July 2018, Vienna, Austria. Vienna; 2018. Article 4597. https://doi.org/10.1201/9780429465086-148
  15. Saichi T., Renaud S., Bouaanani N. Progressive Approach to account for large-scale roughness of concrete - rock interface in practical stability analyses for dam safety evaluation. International Journal of Geomechanics. 2022;22(8). https://doi.org/10.1061/(ASCE)GM.1943-5622.0002468
  16. Farinha M.L.B., Azevedo N.M., Candeias M. Small displacement coupled analysis of concrete gravity dam foundations: static and dynamic conditions. Rock Mechanics and Rock Engineering. 2017;50:439-464. https://doi.org/10.3390/geotechnics2010006
  17. Farinha M.L.B., Azevedo N.M., Leitão N.A., Rocha de Almeida J., Oliveira S. Sliding stability assessment of concrete dams using a 3D discontinuum hydromechanical model following a discrete crack approach. Geotechnics. 2022;2(1):133-157. https://doi.org/10.3390/geotechnics2010006

Copyright (c) 2022 Yuriev S.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies