The modern state of the problem of analyzing the natural frequencies and modes of vibration of a composite structure

Cover Page

Cite item

Abstract

Various methods for calculating the shapes and frequencies of natural vibrations of rod structures and blades are described in the literature. At present, there is still no one unified universal technique for ensuring the vibratory strength of blades, based on the exact solution of the problem of calculating the vibrational characteristics of modern impellers of complex design. Thus, the problem of the flexural-torsional flutter of working blades of turbo-machines is extremely relevant, in spite of the insufficient attention given to it in various literary sources. The above drawbacks can be avoided by applying various design analysis methods. Calculation methods for analyzing the strength of structures, as a rule, are divided into analytical and numerical. Analytical methods for studying the stress-strain and vibration state are based in most cases on simplified relations between the theories of rods, shells, and also the theory of oscillations. The advantage of analytical methods is the relative ease of use and convenience in performing valuation calculations at the initial stages of design. The paper reviews and analyzes works on the finding of frequencies and modes of vibrations of rod structures and compressor blades for their subsequent use for multi-layer anisotropic rod structures from composite materials (CM) during the design phase.

About the authors

Alibek U Nurimbetov

M.Kh. Dulaty Taraz State University

Author for correspondence.
Email: alibek_55@mail.ru

Dr Sci. (Eng.), Professor of Information Systems Department, Taraz State University named after M.H. Dulati. Research interests: constructions from composite materials, multi-layer composite blade, strength and design, statics, oscillations.

7 Suleymenov St., Taraz, 080012, Republic of Kazakhstan

Alexander A Dudchenko

Moscow Aviation Institute (National Research University)

Email: a_dudchenko@mail.ru

Dr Sci. (Eng.), Professor of the Department of Strength of Aviation and RocketSpace Constructions, Moscow Aviation Institute (National Research University). Research interests: aviation constructions, constructions from composite materials, mechanics of destruction, strength and design, statics, oscillations

4 Volokolamskoe shosse, Moscow, 125993, Russian Federation

References

  1. Svishcheva G.P., Birger I.A. (1969). Nadezhnost' i resurs aviatsionnykh gazoturbinnykh dvigateley [Reliability and resource of aviation gas turbine engines]. Moscow, Mashinostroyeniye Publ., 539. (In Russ.)
  2. Inozemtsev A.A. (2008). Dinamika i prochnost' aviatsionnykh dvigateley i energeticheskikh ustanovok [Dynamics and strength of aircraft engines and power plants]. Vol. 4. Moscow, Mashinostroyeniye Publ., 192. (In Russ.)
  3. Mikhaylov A.L. (2003). Printsipy proyektirovaniya i vibrodiagnostika detaley GTD na osnove matematicheskogo modelirovaniya ob"yemnogo napryazhenno-deformirovannogo sostoyaniya [Principles of designing and vibration diagnostics of GTE parts on the basis of mathematical modeling of volumetric stress-strain state] (Dr Sci. (Eng.) Dissertation). Rybinsk, 309. (In Russ.)
  4. Mikhaylov A.L. (2000). Povysheniye nadezhnosti GTD na osnove komp'yuternykh tekhnologiy proyektirovaniya i vibrodiagnostiki ob"yektov lopatok metodom ekvivalentnykh mass [Increase of the reliability of gas turbine engines based on computer design and vibration diagnostics of blade damage by equivalent mass method] (Cand. Sci. (Eng.) Dissertation). Rybinsk, 178. (In Russ.)
  5. Gavrilov S.N. (2002). Usovershenstvovannaya metodika raschetov napryazhenno-deformirovannogo sostoyaniya i chastotnykh kharakteristik rabochikh lopatok parovykh turbin [An improved technique for calculating the stress-strain state and frequency characteristics of working blades of steam turbines] (Cand. Sci. (Eng.) Dissertation). Saint Petersburg, 137. (In Russ.)
  6. Gayev A.V. (2008). Iyerarkhicheskaya posledovatel'nost' modeley dlya issledovaniya napryazhennogo i vibratsionnogo sostoyaniya rabochikh lopatok parovykh turbin [Hierarchical sequence of models for studying the stressed and vibrational state of steam turbine blades] (Cand. Sci. (Eng.) Dissertation). Saint Petersburg, 157. (In Russ.)
  7. Shuvayev N.V. (2014). Metodika chislennogo modelirovaniya aerouprugogo vzaimodeystviya kompressornykh lopatok gazoturbinnogo dvigatelya s dozvukovym nabegayushchim potokom vozdukha [The technique of numerical simulation of aeroelastic interaction of compressor blades of a gas turbine engine with subsonic incoming air flow] (Cand. Sci. (Eng.) Dissertation). Perm, 165. (In Russ.)
  8. Fransson Т.H. (1992). Analysis of Experimental Time-Dependent Blade Surface Pressures from an Oscillating Turbine Cascade Using the Influence-Coefficient Technique. Journal de Physique III, 2(4), 575 – 594.
  9. Shrinivasan A.V. (1997). Flutter and Resonant Vibration Characteristics of Engine Blades. Journal of Engineering for Gas Turbines and Power, 19(3), 742 – 775.
  10. Khorikov A.A. (1976). Obespecheniye otsutstviya flattera lopatok kompressorov na razlichnykh etapakh sozdaniya turbomashin [Ensuring the absence of the flutter of the compressor blades at various stages of the creation of turbomachinery]. Problemy prochnosti [Strength of materials], (3), 25 – 28. (In Russ.)
  11. Kampsti N.А. (2000). Aerodinamika kompressorov [Compressors aerodynamics]. Moscow, Mir Publ., 688.
  12. Marshall J.G. (1996). A Review of Aeroelasticity Methods with Emphasis on Turbomachinery Applications. Journal of Fluids and Structures, 10(3), 237 – 267.
  13. Verdon J.M. (1993). Review of Unsteady Aerodynamic Methods for Turbomachinery Aeroelastic and Aeroacoustic Applications. AIAA Journal, 31(2), 235–249.
  14. Imregun M. (1998). Recent developments in turbomachinery aeroelasticity. Computational Fluid Dynamics, (2), 524 – 533.
  15. Marshall J.G. (1996). An analysis of the aeroelastic behavior of a typical fan-blade with emphasis on the flutter mechanism. International Gas Turbine and Aeroengine Congress and Exhibition, Jun. 10–13, Birmingham, United Kingdom. ASME 96-GT-78.
  16. Biderman V.L. (1980). Teoriya mekhanicheskikh kolebaniy [Theory of mechanical oscillations]. Moscow, Vysshaya shkola Publ., 408.
  17. Vorobyov Yu.S, Shorr B.F. (1983). Teoriya zakruchennyx sterzhnej [The theory of twisted rods]. Кiev, Naukova Dumka Publ., 188.
  18. Birger I.A. (1992). Sterzhni, plastiny i obolochki [Rods, plates and shells]. Moscow, Fizmatlit Publ., 392. (In Russ.)
  19. Birger I.A. (1998). Prochnost' i nadezhnost' mashinostroitel'nykh konstruktsiy. Izbrannyye Trudy [Strength and reliability of engineering structures. Selected works]. Ufa, GMFML Publ., 350. (In Russ.)
  20. Lyav A. (1935). Matematicheskaya teoriya uprugosti [Mathematical theory of elasticity]. Leningrad – Moscow, ONTI Publ., 674. (In Russ.)
  21. Kirchoff G. (1887). Vorlesungen uber mathematische Physik. Mechanik. Leipzig, 466.
  22. Clebsh A. (1862). Theorie der Elastizitat fester Korper. Leipzig, 424.
  23. Riz P.M. (1939). Deformatsiya yestestvenno zakruchennykh sterzhney [Deformation of naturally twisted rods]. Trudy AN SSSR [Proceedings of the Academy of Sciences of the USSR], 23(1), 18 – 21.
  24. Fedorov I.M. (2008). Chislennyy analiz dinamicheskikh ustoychivosti i optimizatsiya lopatok turbomashin [Numerical analysis of mathematical models of dynamic stability and optimization of blades of turbomachines] (Cand. Sci. (Eng.) Dissertation). Moscow, 183. (In Russ.)
  25. Levin A.V. (1981). Prochnost' i vibratsiya lopatok i diskov parovykh turbin [Strength and vibration of blades and disks of steam turbines]. Leningrad, Mashinostroyeniye Publ., 710. (In Russ.)
  26. Lur'ye A.I. (1939). Zadacha Sen-Venana dlya yestestvenno skruchennykh sterzhney [The problem of Saint-Venant for naturally twisted rods]. DАN SSSR [Reports of the Academy of Sciences of the USSR], ХХIV(1), 23–26; ХХIV(3), 226 – 228. (In Russ.)
  27. Vorob'yev Yu.S. (1978). Issledovaniye kolebaniy sistem elementov turboagregatov [Research of oscillations of systems of elements of turbo-aggregates]. Kiev, Naukova Dumka Publ., 135. (In Russ.)
  28. Shorr B.F. (1964). Izgibno-krutil'nyye kolebaniya zakruchennykh kom-pressornykh lopatok [Вending and torsional vibrations of swirling compressor blades]. Prochnost' i dinamika aviatsionnykh dvigateley [Strength and dynamics of aircraft engines]. Issue 1. Moscow, Mashinostroyeniye Publ., 217 – 246. (In Russ.)
  29. Svetlitskiy V.A. (1974). Avtokolebaniya gibkogo sterzhnya v maslyanom sloye [Automatic vibration of a flexible rod in the oil layer]. Izv. Vuzov. Mashinostroyeniye [Proceedings of Higher Educational Institutions. Маchine Building], (12), 48 – 52. (In Russ.)
  30. Temis Yu.M. (2001). Geometricheski nelineynaya konechno-elementnaya model' zakruchivaniya v zadachakh staticheskogo i dinamicheskogo rascheta lopatok [Geometrically nonlinear finite element model of a twisted rod in problems of static and dynamic calculation of blades]. Trudy SIAM [Proceedings of CIAM], (1319), 1–20. (In Russ.)
  31. Ushakova A.I. (ed.) (1987). Metody rascheta napryazhenno-deformirovannogo sostoyaniya lopatok turbomashin. Sbornik statey [Methods for calculating the stress-strain state of turbomachine blades. Collection of articles]. Tr. SIAM [Proceedings of CIAM], (1177), 524. (In Russ.)
  32. Carta F.O. (1967). Coupled Blade-Disk-Shroud Flutter Instabilities in Turbojet Engine. Journal of Engineering for Power, (7), 419–426.
  33. Avgustinovich V.G. (2005). Chislennoye modelirovaniye nestatsionarnykh yavleniy v gazoturbinnykh dvigatelyakh [Numerical simulation of non-stationary phenomena in gas turbine engines]. Moscow, Mashinostroyeniye Publ., 536. (In Russ.)
  34. May M. (2012). Reduced Order Modeling for the Flutter Stability Analysis of a Highly Loaded Transonic Fan. Proceedings of ASME Turbo Expo 2012, June 11–15, Copenhagen, Denmark. GT2012-69775.
  35. Malinin N.N. (1962). Prochnost' turbomashin [Strength of turbomachinery]. Moscow, Mashgiz Publ., 290.
  36. Berdichevskiy V.L. (1983). Variatsionnyye printsipy mekhaniki sploshnoy sredy [Variational principles of solid mechanics]. Moscow, 448.
  37. Nusratullin E.M. (2012). Prochnost' kompozitsionnoy lopatki kompressora gazoturbinnogo dvigatelya [The strength of the composite gas turbine engine compressor blades] (Cand. Sci. (Eng.) Dissertation). Ufa, 54. (In Russ.)
  38. Maekawa Z. (1992). Design concepts of hybrid composites with high damping and high strength properties. 37th International SAMPE Symposium, March 9–12, 100–114.
  39. Bolotin V.V. (1980). Mekhanika mnogosloynykh konstruktsiy [Mechanics of many layers constructions]. Moscow, 375. (In Russ.)
  40. Yekel'chik B.S. (1992). Svyazannyye izgibnokrutil'nyye kolebaniya anizotropnykh sterzhney iz polimernykh kompozitnykh materialov. Sopostavleniye raschetnykh i eksperimental'nykh dannykh dlya sterzhney iz ugleplastik [Associated flexural-torsional oscillations of anisotropic rods made of polymer composite materials. Comparison of calculated and experimental data for the carbon fiber rod]. Mekhanika kompozitnykh materialov [Mechanics of composite materials], (2), 232 – 238. (In Russ.)
  41. Zinov'yev P.A. (1985). Anizotropiya dissipativnykh svoystv voloknistykh kompozitov [Anisotropy of the dissipative properties of fibrous composites]. Mekhanika kompozitnykh materialov [Mechanics of composite materials], (5), 816 – 825. (In Russ.)
  42. Ionov A.V. (1983). Matematicheskiye modeli slozhnykh dempfirovannykh konstruktsiy [Mathematical models of complex damping structures]. Bor'ba s vibratsiyami mashin i ustanovok, Materialy seminara [Combating Vibrations of Machines and Installations, Proceedings of the seminar]. Leningrad, 23–28. (In Russ.)
  43. Kapan'ya R.K. (1990). Posledniye dostizheniya v issledovaniyakh sloistykh balok i plastin. Chast' I: Vliyaniye sdvigov na ustoychivost' [Recent advances in the study of layered beams and plates. Part I: Influence of shifts on stability]. Aerokosmicheskaya tekhnika [Aerospace engineering], (5), 43–57. (In Russ.)
  44. Kapan'ya R.K. (1990). Posledniye dostizheniya v issledovaniyakh sloistykh balok i plastin. Chast' II: Kolebaniya i rasprostraneniye voln [Recent achievements in the studies of layered beams and plates. Part II: Oscillations and wave propagation]. Aerokosmicheskaya tekhnika [Aerospace technology], (5), 58–73. (In Russ.)
  45. Karpov A.V. (1966). Vynuzhdennyye kolebaniya trekhsloynoy plastiny s nesushchim sloyem s uchetom rasseyaniya energii v materiale sloyev [Forced oscillations of a three-layer plate with a carrier layer with allowance for the dispersion of the vibrational energy in the material of the layers]. Izv. vys. uch. zavedeniya. Aviatsionnaya tekhnika [Proceedings of the higher educational institutions. Aviation equipment], (1), 88–93. (In Russ.)
  46. Karimbayev T.D., Nurimbetov A.U. The natural frequency of the composite laminated rod. Structural Mechanics of Engineering Constructions and Buildings, (5), 46–57. (In Russ.)
  47. Rabotnov Yu.N. (1977). Elementy nasledstvennoy mekhaniki fizicheskikh tel [Elements of hereditary mechanics of solids]. Moscow, 384. (In Russ.)
  48. Mall S., Johnson W.S. (1986). Characterization of mode I and mixed mode failure of adhesive bonds between composite adherents’. Composite Materials: Testing and Design, 7th Conference. ASTM STP 893. Whitney J.M. (ed.). American Society for Testing and Materials, 322–334.
  49. Ivantsova O.N. (1998). Metody rascheta sobstvennykh chastot i form kolebaniy plastin i ikh asimptotika [Methods for calculating the natural frequencies and vibration modes of plates and their asymptotics] (Cand. Sci. (Phys.-Math.) Dissertation). Saint Petersburg, 122. (In Russ.)
  50. Reddy J.N. (1984). A simple higher-order theory for laminated composite plates. J. of Applied Mechanics, 51, 745–752.
  51. Reddy J.N. (1983). Geometrically nonlinear transient analysis of laminated composite plates. AIAA Journal, 21, 621–629.
  52. Cho M.H. (1994). Aeroelastic Stability of Hingeless Rotor Blade in Hover Using Large Deflection Theory. AIAA Journal, 32(7), 1472–1477.
  53. Eslimy-Isfahany S.H.R. (1997). Dynamic Response of Composite Beams with Application to Aircraft Wings. Journal of Aircraft, 34(6), 785–791.
  54. Friedman P.P. (1992). Development of a Structural Optimization Capability for the Aeroelastic Tailoring of Composite Rotor Blades with Straight and Swept Tips. AIAA-1992-4779, 722–748.
  55. Gandhi F. (1999). Influence of Balanced Rotor Anisotropy on Helicopter Aeromechanical Stability. AIAA Journal, 37(10), 1152–1160.
  56. Ganguli R. (1995). Aeroelastic Optimization of a Helicopter Rotor with Composite Coupling. Journal of Aircraft, 32(6), 1326–1334.
  57. Jeon S.M. (2000). Aeroelastic Analysis of a Hingeless Rotor Blade in Forward Flight. AIAA Journal, 38(5), 843–850.
  58. Jeon S.M. (2001). Aeroelastic Response and Stability Analysis of Composite Rotor Blades in Forward Flight. Composites Part B: Engineering, 32(3), 249–257.
  59. Kim T. (1993). Nonlinear Large Amplitude Aeroelastic Behavior of Composite Rotor Blades. AIAA Journal, 31(8), 1489–1497.
  60. Lim I. (2009). Aeroelastic Analysis of Rotor Systems Using Trailing edge Flaps. Journal of Sound and Vibration, 321, 525–536.
  61. Nagabhushanam J. (1999). Hingeless-Rotor Aeromechanical Stability in Axial and Forward Flight With Wake Dynamics. Journal of the American Helicopter Society, 44, 222–233.
  62. Srinivas V. (1998). Formulation of a Comprehensive Aeroelastic Analysis for Tilt-Rotor Aircraft. Journal of Aircraft, 35(2), 280–287.
  63. Srinivas V. (1998). Aeroelastic Analysis of advanced Geometry Tiltrotor Aircraft. Journal of the American Helicopter Society, 43, 212–221.
  64. American Institute of Aeronautics and Astronautics, Washington, DC. (1994). Dynamics Specialists Conference, Hilton Head, SC, Apr 21, 22, Technical Papers (A94-23572 06-39), 402–415.
  65. Gandhi F. (1999). Influence of Balanced Rotor Anisotropy on Helicopter Aeromechanical Stability. AIAA Journal, 37(10), 152 – 1160.
  66. Cesnik C.E.S., Hodges D.H. (1997). VABS: A New Concept for Composite Rotor Blade CrossSectional Modeling. Journal of the American Helicopter Society, 42, 27–38.
  67. Chattopadhyay A. (1995). Decomposition-Based Optimization Procedure for High-Speed Prop-Rotors Using Composite Tailoring. Journal of Aircraft, 32(5), 1026–1033.
  68. Lu Y. (1992). Sensitivity Analysis of Discrete Periodic Systems with Applications to Helicopter Rotor Dynamics. AIAA Journal, 30(8), 1962–1969.
  69. Bauchau O.A. (2004). Coupled Rotor-Fuselage Analysis with Finite Motions Using Component Mode Synthesis. Journal of the American Helicopter Society, 49, 201–211.
  70. Shang X. (1999). Aeroelastic Stability of Composite Hingeless Rotors in Hover with Finite-State Unsteady Aerodynamics. Journal of the American Helicopter Society, 44, 206–221.
  71. Smith E.C. (1993). Aeroelastic Response, Loads, and Stability of a Composite Rotor in Forward Flight. AIAA Journal, 31(7), 1265–1273.
  72. Tracy A.L. (1998). Aeroelastic Stability Investigation of a Composite Hingeless Rotor in Hover. Journal of Aircraft, 35(5), 791–797.
  73. Alekseyev N.V. (1977). Napryazheniya i deformatsiya yestestvenno zakruchennykh sterzhney pri kruchenii i szhatii [Stresses and deformation of naturally twisted rods during torsion and compression]. Prochnost' konstruktsiy [Strength of structures], (2), 106–113. (In Russ.)
  74. Vogt D. (2007). Direct Calculation of Aerodynamic Influence Coefficients Using a Commercial CFD Solver. 18th International Symposium on Air Breathing Engines (ISABE), September 2–7, Beijing, China. ISABE-2007. 1233.
  75. Bauer V.O. (1971). Vliyaniye rasstraivleniy lopatok na rezonansnyye kolebaniya [Influence of tuning of blade frequencies on resonant oscillations]. Prochnost' i dinamika aviatsionnykh dvigateley, Sbornik statey [Strength and dynamics of aircraft engines, Collection of articles]. Issue 6. Moscow, Mashinostroyeniye Publ., 75–98. (In Russ.)
  76. Nurimbetov A.U. (2016). Sterzhnevyye i poluprostranstvennyye modeli deformirovaniya sloistykh zakruchennykh izdeliy v pole statsionarnykh i nestatsionarnykh nagruzok [Rod and Half-space model deformation layered twisted products in the field of stationary and non-stationary loads] (Dr Sci. (Eng.) Dissertation). Moscow, 353. (In Russ.)
  77. Nurimbetov A.U., Dudchenko A.A. (2017). Oscillations multilayered composite rods from materials in the field of centrifugal forces. RUDN Journal of Engineering Researches, 18(1), 79–90. (In Russ.)

Copyright (c) 2018 Nurimbetov A.U., Dudchenko A.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies