ON INITIAL POSTBUCKLING EQUILIBRIUM AND MINIMUM ENERGY BARRIER OF AXIALLY COMPRESSED CYLINDRICAL SHELL
- Authors: Manuylov GA1, Begichev MM1
-
Affiliations:
- Moskovskiy Gosudarstvennyj Universitet Putey Soobscheniy (MIIT), Moscow
- Issue: No 1 (2017)
- Pages: 58-69
- Section: Articles
- URL: https://journals.rudn.ru/structural-mechanics/article/view/15206
Cite item
Full Text
Abstract
The features of formation of the initial postbuckling equilibrium of axially compressed elastic circular cylindrical shell are studied in geometrically nonlinear formulation. The character of energy barrier change with the variation of axial load is computed.
Keywords
About the authors
G A Manuylov
Moskovskiy Gosudarstvennyj Universitet Putey Soobscheniy (MIIT), Moscow
Author for correspondence.
Email: noxonius@mail.ru
к.т.н., доцент
127994, г. Москва, ул. Образцова, д 9, стр. 9M M Begichev
Moskovskiy Gosudarstvennyj Universitet Putey Soobscheniy (MIIT), Moscow
Email: noxonius@mail.ru
к.т.н.
127994, г. Москва, ул. Образцова, д 9, стр. 9References
- Yamaki, N. (1984). Elastic stability of circular cylindrical shells. Applied Mathematics and Mechanics, Elsevier, Amsterdam, Netherlands.Vol. 27. 500 p.
- Tennyson, R.C. (1963). A Note on the Classical Buckling Load of Circular Cylindrical Shells Under Axial Compression, AIAA Journal. Vol. 1 (№9). 2194—2196.
- Thielemann, W.F. (1962). On the postbuckling behavior, NASA Techn. Note, №D-1510. P. 203—216.
- Koiter, W.T. (1967). On the Stability of Elastic Equilibrium, NASA Technical Translation F-10, 833, Clearinghouse, US Dept. of Commerce, Nat. Bur. of Standards. N67—25033.
- Budiansky, B. (1967). Dynamic buckling of elastic structures: criteria and estimates, Dynamic stability of structures, edited by G. Hermann, Pergamon, Oxford. P. 83—106.
- Manujlov, G.A., Begichev, M.M. (2015). O mehanizme poteri ustojchivosti krugovoj prodol'no szhatoj cilindricheskoj obolochki. Trudy seminara «Sovremennye problemy mehaniki, jenergojeffektivnost' sooruzhenij i resursosberegajushhie tehnologii». Moskva. RUDN. Sept. 15 – 17, 2015, M.: Izd-vo RUDN. 2015. P. 82—92.
- Manujlov, G.A., Kositsyn, S.B., Begichev, M.M. (2015). O kriticheskih i poslekriticheskih ravnovesijah v zadachah ustojchivosti uprugih system, Stroitel'naja Mehanika Inzhenernyh Konstrukcij i Sooruzhenij. №5. P. 47—54.
- Ispravnikov, L.R. (1955). Jeksperimental'noe issledovanie ustojchivosti cilindricheskoj obolochki pri osevom szhatii, kruchenii i poperechnom davlenii, Trudy Krasnoznamennoj ordena Lenina Voenno-vozdushnoj inzhenernoj akademii im. Prof. N.E. Zhukovskogo; Vyp. 535, pod. red. A.S. Vol'mira. M.: Akademija. 38 p.
- Kanemitsu, S, Nojima, N. (1939). Axial compression test of thin circular cylinders. A. Length effect. B. Visual study of buckling, Master's thesis. California Institute of Technology. 60 p.
- Manujlov, G.A, Kositsyn, S.B., Begichev, M.M. (2016). O javlenii poteri ustojchivosti prodol'no szhatoj krugovoj cilindricheskoj obolochki. Chast' 1: O poslekriticheskom ravnovesii obolochki, International J. for Computational Civil and Structural Engineering, Vol. 12(3). P. 58—72.
- Manujlov, G.A., Kositsyn, S.B., Begichev, M.M. (2016). Jenergeticheskaja ocenka maksimal'noj prodol'no szhimajushhej sily v zadache ustojchivosti krugovoj cilindricheskoj, Aktual'nye problemy chislennogo modelirovanija zdanij, sooruzhenij i kompleksov, Tom 2, K 25-letiju Nauchno-issledovatel'skogo centra StaDiO: Monografija, Pod obshhej redakciej A.M. Belostockogo i P.A. Akimova, M.: Izd-vo ASV. P.533—547.
- Potier-Ferry, M. (1979). Perturbed Bifurcation Theory, Journal of Differential Equations. 33. P. 112—146.
- Manujlov, G.A., Zhukov, K.A., Kositsyn, S.B. (1989). Metod «neosobennyh prodolzhenij» v zadachah ustojchivosti nelinejno deformiruemyh uprugih system, Stroitel'naja mehanika i raschet sooruzhenij. №5. P. 68—72.
- Karman, T.V., Tsien, H.S. (1941). The buckling of thin cylindrical shells under axial compression, J. Aero. Sci., Vol. 8. 303—312.
- Tsien, H.S. (1942). Theory for the buckling of thin shells, J. Aero. Sci., 9. P. 373—384.
- Friedrichs, K.O. (1941). On the minimum buckling load for spherical shells, Theodore von Kármán Anniversary Volume, California Institute of Technology, Pasadena, Calif.. P. 258—272.
- Tsien, H.S. (1947). Lower Buckling Load in the Nonlinear Buckling Theory for Thin Shells, Quarterly of Applied Mathematics, Vol. 5, No 2, July 1947. P. 236—237.
- Jones, R.M. (1963). Toward a New Snap-Through Buckling Criterion for Axially Compressed Circular Cylindrical Shells, AIAA Journal, Vol. 4, No. 9. P. 1526—1530.
- Esslinger, M., Geier, B. (1974). Calculated postbuckling loads as lower limits for the buckling loads of thin-walled circular cylinders, Buckling of structures: Proceedings of the Symposium, Cambridge, Mass. P. 274—290.
- Hunt, G.W., Lord, G.J., Champneys, A.R. (1999). Homoclinic and heteroclinic orbits underlying the post-buckling of axially-compressed cylindrical shells, Comput. Methods Appl. Mech. Eng., 170. P. 239—251.
- Hunt, G.W., LucenaNeto, E. (1993). Maxwell critical loads for axially loaded cylindrical shells. ASME, J. Appl. Mech., 60(3). P. 702—706.
- Hunt, G.W. (2011). Reflections and symmetries in space and time. IMA Journal of Applied Mathematics, 76. P. 2—26.
- Hunt, G.W., Lord, G.J., Peltier, M.A. (2003). Cylindrical shell buckling: a characterization of localization and periodicity. Discrete & Continuous Dynamical Systems, Series B, 3. P. 505—518.
- Budd, C.J., Hunt, G.W., Kuske, R. (2001). Asymptotics of cellular buckling close to the Maxwell load. Proc. R. Soc. A, 457. P. 2935—2964.
- Thompson, J.M.T., Van der Heijden, G.H.M. (2014). Quantified “shock-sensitivity” above the Maxwell load. Int. J. Bifurcation and Chaos, 24 (3). 14 p.
- Horak, J., Lord, G.J., Peletier, M.A. (2006). Cylinder buckling: the mountain pass as an organizing centre, SIAM J. Appl. Math., 66. P. 1793—1824.
- Palamarchuk, V.G. (1970). Process vypuchivanija krugovoj cilindricheskoj obolochki pri osevom szhatii. Trudy Sed'moj Vsesojuznoj Konferencii po Teorii Obolochek i Plastin, M.: Nauka. P. 460—464.