Discrete and Continuous Models and Applied Computational Science
Editor-in-Chief: Yuriy P. Rybakov, Doctor of Science (Physics and Mathematics), Professor, Honored Scientist of Russia
ISSN: 2658-4670 (Print). ISSN: 2658-7149 (Online)
Founded in 1993. Publication frequency: quarterly.
Peer-Review: double blind. Publication language: English.
APC: no article processing charge. Open Access: Open Access , DOAJ SEAL
PUBLISHER: Peoples’ Friendship University of Russia named after Patrice Lumumba (RUDN University)
See the Journal History to get information on previous journal titles.
Indexation: Russian Index of Science Citation, Scopus, VINITI RAS, DOAJ, Google Scholar, Ulrich's Periodicals Directory, WorldCat, Cyberleninka, East View, Dimensions, ResearchBib, Lens, Research4Life, JournalTOCs
Discrete and Continuous Models and Applied Computational Science was created in 2019 by renaming RUDN Journal of Mathematics, Information Sciences and Physics. RUDN Journal of Mathematics, Information Sciences and Physics was created in 2006 by combining the series "Physics", "Mathematics", "Applied Mathematics and Computer Science", "Applied Mathematics and Computer Mathematics".
Discussed issues affecting modern problems of physics, mathematical modeling, computer science. The widely discussed issues Teletraffic theory, queuing systems design, software and databases design and development.
Discussed problems in physics related to quantum theory, nuclear physics and elementary particle physics, astrophysics, statistical physics, the theory of gravity, plasma physics and the interaction of electromagnetic fields with matter, radio physics and electronics, nonlinear optics.
Journal has a high qualitative and quantitative indicators. The Editorial Board consists of well-known scientists of world renown, whose works are highly valued and are cited in the scientific community. Articles are indexed in the Russian and foreign databases. Each paper is reviewed by at least two reviewers, the composition of which includes PhDs, are well known in their circles. Author's part of the magazine includes both young scientists, graduate students and talented students, who publish their works, and famous giants of world science.
Subject areas:
- Mathematics
- Modeling and Simulation
- Mathematical Physics
- Computer Science
- Computer Science (miscellaneous)
Current Issue
Vol 32, No 4 (2024)
- Year: 2024
- Articles: 9
- URL: https://journals.rudn.ru/miph/issue/view/1856
- DOI: https://doi.org/10.22363/2658-4670-2024-32-4
Full Issue
Editorial


Computer Science
Two-queue polling system as a model of an integrated access and backhaul network node in half-duplex mode
Abstract
Integrated Access and Backhaul (IAB) technology facilitates the establishment of a compact network by utilizing repeater nodes rather than fully equipped base stations, which subsequently minimizes the expenses associated with the transition towards next-generation networks. The majority of studies focusing on IAB networks rely on simulation tools and the creation of discrete-time models. This paper introduces a mathematical model for the boundary node in an IAB network functioning in half-duplex mode. The proposed model is structured as a polling service system with a dual-queue setup, represented as a random process in continuous time, and is examined through the lens of queueing theory, integral transforms, and generating functions (GF). As a result, analytical expressions were obtained for the GF, marginal distribution, as well as the mean and variance of the number of requests in the queues, which correspond to packets pending transmission by the relay node via access and backhaul channels.


MMEmAsis: multimodal emotion and sentiment analysis
Abstract
The paper presents a new multimodal approach to analyzing the psycho-emotional state of a person using nonlinear classifiers. The main modalities are the subject’s speech data and video data of facial expressions. Speech is digitized and transcribed using the Scribe library, and then mood cues are extracted using the Titanis sentiment analyzer from the FRC CSC RAS. For visual analysis, two different approaches were implemented: a pre-trained ResNet model for direct sentiment classification from facial expressions, and a deep learning model that integrates ResNet with a graph-based deep neural network for facial recognition. Both approaches have faced challenges related to environmental factors affecting the stability of results. The second approach demonstrated greater flexibility with adjustable classification vocabularies, which facilitated post-deployment calibration. Integration of text and visual data has significantly improved the accuracy and reliability of the analysis of a person’s psycho-emotional state


Asymptotic diffusion analysis of RQ system M/M/1 with unreliable server
Abstract
The paper considers a single-line retrial queueing system with an unreliable server. Queuing systems are called unreliable if their servers may fail from time to time and require restoration (repair), only after which they can resume servicing customers. The input of the system is a simple Poisson flow of customers. The service time and uptime of the server are distributed exponentially. An incoming customer try to get service. The server can be free, busy or under repair. The customer is serviced immediately if the server is free. If it is busy or under repair, the customer goes into orbit. And after a random time it tries to get service again. The study is carried out by the method of asymptotically diffusion analysis under the condition of a large delay of requests in orbit. In this work, the transfer coefficient and diffusion coefficient were found and a diffusion approximation


Modeling and Simulation
On the problem of normal modes of a waveguide
Abstract
Various approaches to calculating normal modes of a closed waveguide are considered. A review of the literature was given, a comparison of the two formulations of this problem was made. It is shown that using a self-adjoint formulation of the problem of normal waveguide modes eliminates the occurrence of artifacts associated with the appearance of a small imaginary additive to the eigenvalues. The implementation of this approach for a rectangular waveguide with rectangular inserts in the Sage computer algebra system is presented and tested on hybrid modes of layered waveguides. The tests showed that our program copes well with calculating the points of the dispersion curve corresponding to the hybrid modes of the waveguide.


On summation of Fourier series in finite form
Abstract
The problem of summation of Fourier series in finite form is formulated in the weak sense, which allows one to consider this problem uniformly both for classically convergent and for divergent series. For series with polynomial Fourier coefficients



Solving a two-point second-order LODE problem by constructing a complete system of solutions using a modified Chebyshev collocation method
Abstract
Earlier we developed a stable fast numerical algorithm for solving ordinary differential equations of the first order. The method based on the Chebyshev collocation allows solving both initial value problems and problems with a fixed condition at an arbitrary point of the interval with equal success. The algorithm for solving the boundary value problem practically implements a single-pass analogue of the shooting method traditionally used in such cases. In this paper, we extend the developed algorithm to the class of linear ODEs of the second order. Active use of the method of integrating factors and the d’Alembert method allows us to reduce the method for solving second-order equations to a sequence of solutions of a pair of first-order equations. The general solution of the initial or boundary value problem for an inhomogeneous equation of the second order is represented as a sum of basic solutions with unknown constant coefficients. This approach ensures numerical stability, clarity, and simplicity of the algorithm.


Development and adaptation of higher-order iterative methods in Rn with specific rules
Abstract
In this article, we propose fourth- and fifth-order two-step iterative methods for solving the systems of nonlinear equations in



Physics and Astronomy
Superconductivity and special symmetry of twisted tri-layer graphene in chiral model
Abstract
Superconducting properties of twisted tri-layer graphene (TTG) are studied within the scope of the chiral model based on using the unitary matrix


