Механизмы регуляции аллергических и аутоиммунных реакций биорегуляторами бактериального происхождения

Обложка

Цитировать

Полный текст

Аннотация

Актуальность. Рост аллергических и аутоиммунных заболеваний, наблюдающийся в последние десятилетия, актуализирует задачу терапии и профилактики их возникновения, что требует детальных исследований механизмов их появления. На возникновение и прогрессирование аллергических и аутоиммунных заболеваний влияют генетическая предрасположенность, образ жизни, факторы окружающей среды, нарушения согласованной работы иммунной системы и, как следствие, иммунного гомеостаза. Лечение этих заболеваний преимущественно симптоматическое и часто сопровождается нежелательными побочными эффектами. Нарушения иммунной системы при различных патологиях имеют свои особенности для каждого вида заболевания и в то же время имеют общие механизмы. Учитывая наличие в организме человека большого количества различных микроорганизмов, учет их влияния имеет первостепенное значение. Микроорганизмы являются источником биологически активных молекул, действие которых может как предотвратить и уменьшить тяжесть заболевания, так и усугубить его. Целью настоящего исследования был анализ цитокинового профиля действия фрагментов клеточных стенок грамотрицательных и грамположительных бактерий - липополисахарида (ЛПС) и мурамилпептида (МП), а также низина - антимикробного пептида бактериальной природы. происхождения на мононуклеарных клетках человека. Материалы и методы. Мононуклеарные клетки получали из периферической крови здоровых добровольцев с использованием среды для разделения клеток Lympholyte CL 5015 и культивировали в присутствии ЛПС, ГМДП и бактериоцина низина. Цитокиновую активность ЛПС, ГМДП и бактериоциннизина исследовали с помощью мультиплексного цитокинового анализа; анализ поверхностных маркеров определяли проточной цитометрией. Результаты и обсуждение. Показано, что фрагменты клеточной стенки бактерий в значительно большей степени, чем низин, индуцируют продукцию цитокинов, хемокинов и факторов роста. Установлено, что ЛПС и МП повышают экспрессию CD11c на дендритных клетках, тогда как бактериоцин низин не влияет на увеличение CD11c+ ДК. ЛПС и МП в проведенных исследованиях ex vivo не влияли на появление CCR7. Выводы. Биорегуляторы бактериального происхождения запускают механизм отрицательной обратной связи, индуцируя синтез противовоспалительных факторов, способных предотвратить воспалительный процесс. Понимание молекулярных механизмов влияния биорегуляторов бактериального происхождения на организм человека открывает новые подходы в профилактике и разработке стратегий персонализированной терапии.

Об авторах

С. В. Гурьянова

Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова Российской академии наук; Российский университет дружбы народов

Автор, ответственный за переписку.
Email: svgur@mail.ru
ORCID iD: 0000-0001-6186-2462
SPIN-код: 6722-8695
Москва, Российская Федерация

И. А. Сигматулин

Московский государственный университет им. М.В. Ломоносова

Email: svgur@mail.ru
ORCID iD: 0009-0008-2254-6932
Москва, Российская Федерация

О. О. Гигани

Российский университет дружбы народов

Email: svgur@mail.ru
ORCID iD: 0000-0002-7720-0727
SPIN-код: 6541-3241
Москва, Российская Федерация

С. А. Липкина

Московский государственный университет им. М.В. Ломоносова

Email: svgur@mail.ru
Москва, Российская Федерация

Список литературы

  1. Soyer OU, Akdis M, Ring J, Behrendt H, Crameri R, Lauener R, Akdis, CA. Mechanisms of peripheral tolerance to allergens. Allergy. 2013;68(2):161-170. doi: 10.1111/all.12085
  2. Rosenblum MD, Gratz IK, Paw JS, Abbas AK. Treating human autoimmunity: current practice and future prospects. Sci Transl Med. 2012;4(125):125sr1. doi: 10.1126/scitranslmed.3003504.
  3. Akdis CA. Does the epithelial barrier hypothesis explain the increase in allergy, autoimmunity and other chronic conditions? Nat. Rev. Immunol. 2021;21:739-751. doi: 10.1038/s41577-021-00538-7
  4. Wang J, Zhou Y, Zhang H. Pathogenesis of allergic diseases and implications for therapeutic interventions. Sig Transduct Target Ther. 2023;8:138. https://doi.org/10.1038/s41392-023-01344-4
  5. Chafen JJ, Newberry SJ, Riedl MA, Bravata DM, Maglione M, Suttorp MJ, Sundaram V, Paige NM, Towfigh A, Hulley BJ, Shekelle PG. Diagnosing and managing common food allergies: a systematic review. JAMA. 2010;303(18):1848-56. doi: 10.1001/jama.2010.582
  6. Linneberg A. The increase in allergy and extended challenges. Allergy. 2011;66 Suppl 95:1-3. doi: 10.1111/j.1398-9995.2011.02619.x
  7. Denton E, O’Hehir RE, Hew M. The changing global prevalence of asthma and atopic dermatitis. Allergy. 2023;78(8):2079-2080. doi: 10.1111/all.15754
  8. GBD 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2020;396(10258):1204-1222. doi: 10.1016/S0140-6736(20)30925-9
  9. Shin YH, Hwang J, Kwon R, Lee SW, Kim MS; GBD 2019 Allergic Disorders Collaborators; Shin JI, Yon DK. Global, regional, and national burden of allergic disorders and their risk factors in 204 countries and territories, from 1990 to 2019: A systematic analysis for the Global Burden of Disease Study 2019. Allergy. 2023;78(8):2232- 2254. doi: 10.1111/all.15807
  10. Frazzei G, van Vollenhoven RF, de Jong BA, Siegelaar SE and van Schaardenburg D. Preclinical Autoimmune Disease: a Comparison of Rheumatoid Arthritis, Systemic Lupus Erythematosus, Multiple Sclerosis and Type 1 Diabetes. Front. Immunol. 2022;13:899372. doi: 10.3389/fimmu.2022.899372
  11. Conrad N, Misra S, Verbakel JY, Verbeke G, Molenberghs G, Taylor PN, Mason J, Sattar N, McMurray JJV, McInnes IB, Khunti K, Cambridge G. Incidence, prevalence, and co-occurrence of autoimmune disorders over time and by age, sex, and socioeconomic status: a population-based cohort study of 22 million individuals in the UK. Lancet. 2023;401(10391):1878-1890. doi: 10.1016/S0140-6736(23)00457-9
  12. Miller FW. The increasing prevalence of autoimmunity and autoimmune diseases: an urgent call to action for improved understanding, diagnosis, treatment, and prevention. Curr Opin Immunol. 2023;80:102266. doi: 10.1016/j.coi.2022.102266
  13. Насонов ЕЛ. Современная концепция аутоиммунитета в ревматологии. Научно-практическая ревматология. 2023;61(4):397-420.
  14. Szekanecz Z, McInnes IB, Schett G, Szamosi S, Benkő S, Szűcs G. Autoinflammation and autoimmunity across rheumatic and musculoskeletal diseases. Nat Rev Rheumatol. 2021;17(10):585-595. doi: 10.1038/s41584-021-00652-9
  15. Hedrich CM, Tsokos GC. Bridging the gap between autoinflammation and autoimmunity. Clin Immunol. 2013;147(3):151- 154. doi: 10.1016/j.clim.2013.03.006
  16. Theofilopoulos AN, Kono DH, Baccala R. The multiple pathways to autoimmunity. Nat Immunol. 2017;18(7):716-724. doi: 10.1038/ni.3731
  17. Hedrich CM. Shaping the spectrum - From autoinflammation to autoimmunity. Clin Immunol. 2016;165:21-28. doi: 10.1016/j.clim.2016.03.002
  18. Sharkey P, Thomas R. Immune tolerance therapies for autoimmune diseases: Shifting the goalpost to cure. Curr Opin Pharmacol. 2022;65:102242. doi: 10.1016/j.coph.2022.102242
  19. Lis K, Ukleja-Sokołowska N, Karwowska K, Wernik J, Pawłowska M, Bartuzi Z. The Two-Sided Experimental Model of ImmunoCAP Inhibition Test as a Useful Tool for the Examination of Allergens Cross-Reactivity on the Example of α-Gal and Mammalian Meat Sensitization - A Preliminary Study. Curr. Issues Mol. Biol. 2023;45:1168-1182. https://doi.org/10.3390/cimb45020077
  20. Kaiser SV, Huynh T, Bacharier LB, Rosenthal JL, Bakel LA, Parkin PC, Cabana MD. Preventing Exacerbations in Preschoolers With Recurrent Wheeze: A Meta-Analysis. Pediatrics 2016; 137: e20154496.
  21. Pałgan K, Żbikowska-Götz M, Lis K, Chrzaniecka E, Bartuzi Z. Omalizumab improves forced expiratory volume in 1 second in patients with severe asthma. Postepy Dermatol Alergol. 2018;35(5):495-497. doi: 10.5114/ada.2018.77241
  22. Suissa S, Ernst P. Inhaled Corticosteroids: Impact on Asthma Morbidity and Mortality. J. Allergy Clin. Immunol. 2001;107:937-944.
  23. Hossny E, Rosario N, Lee BW, Singh M, El-Ghoneimy D, Soh J, Le Souef P. The Use of Inhaled Corticosteroids in Pediatric Asthma: Update. World Allergy Organ. J. 2016;9:26.
  24. Axelsson, I.; Naumburg, E.; Prietsch, S.O.; Zhang, L. Inhaled Corticosteroids in Children with Persistent Asthma: Effects of Different Drugs and Delivery Devices on Growth. Cochrane Database Syst. Rev. 2019;6: CD010126.
  25. van Boven JFM, de Jong-van den Berg LTW, Vegter S. Inhaled Corticosteroids and the Occurrence of Oral Candidiasis: A Prescription Sequence Symmetry Analysis. Drug Saf. 2013;36:231-236.
  26. Wolfgram PM, Allen DB. Effects of Inhaled Corticosteroids on Growth, Bone Metabolism, and Adrenal Function. Adv. Pediatr. 2017;64:331-345.
  27. Gidaris DK, Stabouli S, Bush A. Beware the Inhaled Steroids or Corticophobia? Swiss Med. Wkly. 2021, 151, w20450. doi: 10.4414/smw.2021.20450
  28. Bush A. Inhaled Corticosteroid and Children’s Growth. Arch. Dis. Child. 2014;99:191-192. doi: 10.1136/archdischild-2012-303105
  29. McLendon K, Sternard BT. Anaphylaxis. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2023. Available from: https://www.ncbi.nlm.nih.gov/books/NBK482124/
  30. Sestan M, Kifer N, Arsov T, Cook M, Ellyard J, Vinuesa CG, Jelusic M. The Role of Genetic Risk Factors in Pathogenesis of Childhood-Onset Systemic Lupus Erythematosus. Curr Issues Mol Biol. 2023;45(7):5981-6002. doi: 10.3390/cimb45070378
  31. Lv H, Wang Y, Gao Z, Liu P, Qin D, Hua Q, Xu Y. Knowledge mapping of the links between the microbiota and allergic diseases: A bibliometric analysis (2002-2021). Front Immunol. 2022;13:1045795. doi: 10.3389/fimmu.2022.1045795
  32. Postler TS, Ghosh S. Understanding the Holobiont: How Microbial Metabolites Affect Human Health and Shape the Immune System. Cell Metab. 2017;26(1):110-130. doi: 10.1016/j.cmet.2017.05.008
  33. Donaldson GP, Lee SM, Mazmanian SK. Gut biogeography of the bacterial microbiota. Nat Rev Microbiol. 2016;14(1):20-32. doi: 10.1038/nrmicro3552
  34. Cummings JH, Macfarlane GT. Role of intestinal bacteria in nutrient metabolism. JPEN J Parenter Enteral Nutr. 1997;21:357-365. doi: 10.1177/0148607197021006357
  35. Cummings JH, Pomare EW, Branch WJ, Naylor CP, Macfarlane GT. Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut. 1987;28:1221-1227.
  36. Hirata SI, Kunisawa J. Gut microbiome, metabolome, and allergic diseases. Allergol Int. 2017;66(4):523-528. doi: 10.1016/j. alit.2017.06.008
  37. Brestoff JR, Artis D. Commensal bacteria at the interface of host metabolism and the immune system. Nat Immunol. 2013;14(7):676-84. doi: 10.1038/ni.2640
  38. Gorshkova RP, Isakov VV, Nazarenko EL, Ovodov YS, Guryanova SV, Dmitriev BA. Structure of the O-specific polysaccharide of the lipopolysaccharide from Yersinia kristensenii O:25.35. Carbohydr. Res. 1993;241:201-208. doi: 10.1016/0008-6215(93)80106-o
  39. Liu X, Yin S, Chen Y, Wu Y, Zheng W, Dong H, Bai Y, Qin Y, Li J, Feng S, Zhao P. LPS-induced proinflammatory cytokine expression in human airway epithelial cells and macrophages via NF-κB, STAT3 or AP-1 activation. Mol Med Rep. 2018;17(4):5484-5491. doi: 10.3892/mmr.2018.8542
  40. Sangaran PG, Ibrahim ZA, Chik Z, Mohamed Z, Ahmadiani A. Lipopolysaccharide Pre-conditioning Attenuates Pro-inflammatory Responses and Promotes Cytoprotective Effect in Differentiated PC12 Cell Lines via Pre-activation of Toll-Like Receptor-4 Signaling Pathway Leading to the Inhibition of Caspase-3/ Nuclear Factor-κappa B Pathway. Front Cell Neurosci. 2021;14:598453. doi: 10.3389/fncel.2020.598453
  41. DeForge LE, Remick DG. Kinetics of TNF, IL-6, and IL-8 gene expression in LPS-stimulated human whole blood. Biochem Biophys Res Commun. 1991;174(1):18-24. doi: 10.1016/0006-291x(91)90478-p.
  42. Khan, A.W.; Farooq, M.; Hwang, M.-J.; Haseeb, M.; Choi, S. Autoimmune Neuroinflammatory Diseases: Role of Interleukins. Int. J. Mol. Sci. 2023;24:7960. https://doi.org/10.3390/ijms24097960
  43. Hartman DA, Ochalski SJ, Carlson RP. The effects of antiinflammatory and antiallergic drugs on cytokine release after stimulation of human whole blood by lipopolysaccharide and zymosan A. Inflamm Res. 1995l;44(7):269-74. doi: 10.1007/BF02032567
  44. Guryanova SV, Gigani OB, Gudima GO, Kataeva AM Kolesnikova NV. Dual Effect of Low-Molecular-Weight Bioregulators of Bacterial Origin in Experimental Model of Asthma. Life. 2022;12:192. https://doi.org/10.3390/life12020192
  45. Meng CY, Gong XL, Zhao R, Lu Q, Dong XY. [Effect of maternal exposure to lipopolysaccharide during pregnancy on allergic asthma in offspring in mice]. Zhonghua Er Ke Za Zhi. 2022;60(4):302- 306. Chinese. doi: 10.3760/cma.j.cn112140-20220130-00100
  46. Chovanova L, Vlcek M, Krskova K, Penesova A, Radikova Z, Rovensky J, Cholujova D, Sedlak J, Imrich R. Increased production of IL-6 and IL-17 in lipopolysaccharide-stimulated peripheral mononuclears from patients with rheumatoid arthritis. Gen Physiol Biophys. 2013;32(3):395-404. doi: 10.4149/gpb_2013043
  47. Li Y, Chi L, Stechschulte DJ, Dileepan KN. Histamine-induced production of interleukin-6 and interleukin-8 by human coronary artery endothelial cells is enhanced by endotoxin and tumor necrosis factor-alpha. Microvasc Res. 2001;61(3):253-62. doi: 10.1006/mvre.2001.2304
  48. Medzhitov, R. Toll-like receptors and innate immunity. Nat. Rev. Immunol. 2001;1:135-145. doi: 10.1038/35100529
  49. Girardin SE, Boneca IG, Viala J, Chamaillard M, Labigne A, Thomas G, Philpott DJ, Sansonetti PJ. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J. Biol. Chem. 2003;278:8869-8872. doi: 10.1074/jbc.C200651200
  50. Inohara N, Ogura Y, Fontalba A, Gutierrez O, Pons F, Crespo J, Fukase K, Inamura S, Kusumoto S, Hashimoto M, Foster SJ, Moran AP, Fernandez-Luna JL, Nuñez G. Host recognition of bacterial muramyl dipeptide mediated through NOD2. Implications for Crohn’s disease. J Biol Chem. 2003;278(8):5509-12. doi: 10.1074/jbc.C200673200
  51. Guryanova SV. Immunomodulation, Bioavailability and Safety of Bacteriocins. Life. 2023;13:1521. https://doi.org/10.3390/life13071521
  52. Guryanova SV, Kataeva A. Inflammation Regulation by Bacterial Molecular Patterns. Biomedicines. 2023;11:183. https://doi.org/10.3390/biomedicines11010183
  53. Osornio-Vargas AR, Goodell AL, Hernández-Rodríguez NA, Brody AR, Coin PG, Badgett A, Bonner JC. Platelet-derived growth factor (PDGF)-AA, -AB, and -BB induce differential chemotaxis of early-passage rat lung fibroblasts in vitro. Am J Respir Cell Mol Biol. 1995;12(1):33-40. doi: 10.1165/ajrcmb.12.1.7811469
  54. Ke F, Xie P, Yang Y, Yan L, Guo A, Yang J, Zhang J, Liu L, Wang Q and Gao X. Effects of Nisin, Cecropin, and Penthorum chinense Pursh on the Intestinal Microbiome of Common Carp (Cyprinus carpio). Front. Nutr. 2021;8:729437. doi: 10.3389/fnut.2021.729437
  55. Brand AM, Smith C, Dicks LMT. The Effects of Continuous In Vivo Administration of Nisin on Staphylococcus aureus Infection and Immune Response in Mice. Probiotics and Antimicrob. Prot. 2013;5:279-286. https://doi.org/10.1007/s12602-013-9141-3
  56. Lukácsi S, Gerecsei T, Balázs K, Francz B, Szabó B, Erdei A, Bajtay Z. The differential role of CR3 (CD11b/CD18) and CR4 (CD11c/ CD18) in the adherence, migration and podosome formation of human macrophages and dendritic cells under inflammatory conditions. PLoS One. 2020 May 4;15(5): e0232432. doi: 10.1371/journal.pone.0232432
  57. Caux C, Ait-Yahia S, Chemin K, de Bouteiller O, Dieu- Nosjean MC, Homey B, Massacrier C, Vanbervliet B, Zlotnik A, Vicari A. Dendritic cell biology and regulation of dendritic cell trafficking by chemokines. Springer Semin Immunopathol. 2000;22(4):345-69. doi: 10.1007/s002810000053
  58. Fanning S, Hall LJ, Cronin M, Zomer A, MacSharry J, Goulding D, Motherway MO, Shanahan F, Nally K, Dougan G, van Sinderen D. Bifidobacterial surface-exopolysaccharide facilitates commensal-host interaction through immune modulation and pathogen protection. Proc Natl Acad Sci U S A. 2012;109(6):2108-13. doi: 10.1073/pnas.1115621109
  59. Guryanova SV, Kozlov IG, Meshcheryakova EA, Alekseeva LG, Andronova TM. Investigation into the influence of glucosaminylmuramyl dipeptide on the normalization of Th1/ TH2 balance in patients with atopic bronchial asthma. Immunol. 2009;30:305-309. (In Russian)
  60. Гурьянова С.В., Хаитов РМ. Глюкозаминилмурамилдипептид - ГМДП: воздействие на мукозальный иммунитет (к вопросу иммунотерапии и иммунопрофилактики). Иммунология. 2020, 41 (2): 174-183. doi: 10.33029/0206-4952-2020-41-2-174-183.
  61. Guryanova S V, Kudryashova NA, Kataeva AA, Orozbekova BT, Kolesnikova NV, Chuchalin AG. Novel approaches to increase resistance to acute respiratory infections. RUDN Journal of Medicine.2021;25(3):181-195. doi: 10.22363/2313-0245-2021-25-3-1 81-195
  62. Корженевский А.А., Корженевская Н.П. Иммунотерапия на современном этапе: виды и тактика применения. Вестник Российского университета дружбы народов. Серия: Медицина. 2022. Т. 26. No 4. С. 404-421. doi: 10.22363/2313-0245-2022-26-4-404-421.
  63. Rechkina EA, Denisova GF, Masalova OV, Lideman LF, Denisov DA, Lesnova EI, Ataullakhanov RI, Gur’ianova SV, Kushch AA. [Epitope mapping of antigenic determinants of hepatitis C virus proteins by phage display]. Mol Biol (Mosk). 2006;40(2):357-68. (In Russian). PMID: 16637277.
  64. Arpaia N, Campbell C, Fan X, Dikiy S, van der Veeken J, deRoos P, Liu H, Cross JR, Pfeffer K, Coffer PJ, Rudensky AY. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature. 2013;504(7480):451-5. doi: 10.1038/nature12726
  65. Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D, Nakanishi Y, Uetake C, Kato K, Kato T, Takahashi M, Fukuda NN, Murakami S, Miyauchi E, Hino S, Atarashi K, Onawa S, Fujimura Y, Lockett T, Clarke JM, Topping DL, Tomita M, Hori S, Ohara O, Morita T, Koseki H, Kikuchi J, Honda K, Hase K, Ohno H. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 2013;504(7480):446-50. doi: 10.1038/nature12721
  66. Miller ZA, Rankin KP, Graff-Radford NR, Takada LT, Sturm VE, Cleveland CM, Criswell LA, Jaeger PA, Stan T, Heggeli KA, Hsu SC, Karydas A, Khan BK, Grinberg LT, Gorno-Tempini ML, Boxer AL, Rosen HJ, Kramer JH, Coppola G, Geschwind DH, Rademakers R, Seeley WW, Wyss-Coray T, Miller BL. TDP-43 frontotemporal lobar degeneration and autoimmune disease. J Neurol Neurosurg Psychiatry. 2013;84(9):956-62. doi: 10.1136/jnnp-2012-304644
  67. Marietta EV, Murray JA, Luckey DH, Jeraldo PR, Lamba A, Patel R, Luthra HS, Mangalam A, Taneja V. Suppression of Inflammatory Arthritis by Human Gut-Derived Prevotella histicola in Humanized Mice. Arthritis Rheumatol. 2016;68(12):2878-2888. doi: 10.1002/art.39785
  68. Li H, Zhang GX, Chen Y, Xu H, Fitzgerald DC, Zhao Z, Rostami A. CD11c+CD11b+ dendritic cells play an important role in intravenous tolerance and the suppression of experimental autoimmune encephalomyelitis. J Immunol. 2008;181(4):2483-93. doi: 10.4049/jimmunol.181.4.2483
  69. Guryanova S, Guryanova A. sbv IMPROVER: Modern approach to systems biology. Methods Mol. Biol. 2017;1613:21-29. doi: 10.1007/978-1-4939-7027-8_2
  70. Hoeng J, Boue S, Fields B, Park J, Peitsch MC, Schlage WK, Talikka M, Performers, TCB, Binenbaum I, Bondarenko V, Bulgakov OV, Cherkasova V, Diaz-Diaz N, Fedorova L, Guryanova S, Guzova J, Igorevna Koroleva G, Kozhemyakina E, Kumar R, Lavid N, Lu Q, Menon S, Ouliel Y, Peterson SC, Prokhorov A, Sanders E, Schrier S, Schwaitzer Neta G, Shvydchenko I, Tallam A, Villa-Fombuena G, Wu J, Yudkevich I, Zelikman M. Enhancement of COPD biological networks using a web-based collaboration interface. F1000Research 2015, 4. https://doi.org/10.12688/f1000research.5984.2

Дополнительные файлы

Нет дополнительных файлов для отображения


© Гурьянова С.В., Сигматулин И.А., Гигани О.О., Липкина С.А., 2023

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial 4.0 International License.

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах