Influence of glial progenitor cells on the restoration of sensorimotor deficits in rats after traumatic brain injury

Cover Page

Cite item

Abstract

Relevance. The search for new methods of effective therapy for traumatic brain injury is one of the important tasks of modern biomedicine. One promising approach for treating traumatic brain injury is cell therapy. The aim of the work is to study the therapeutic effect of glial progenitor cells derived from induced pluripotent stromal cells in an experimental model of traumatic brain injury. Materials and Methods. Modeling of traumatic brain injury was carried out on mature male Wistar rats. The therapeutic group was administered a single dose of 750*103 cells/ml glial progenitor cells with a volume of 1 ml, and the control group — 1 ml of phosphate-­buffered saline. Administration was carried out intra-­arterially 24 hours after injury. To analyze the therapeutic effectiveness, an MRI study was performed on the 14th day, as well as a limb-placing test on the 1st, 3rd, 7th and 14th days. Histological examination was carried out on days 1, 3 and 7 after administration to assess the migration and distribution of stained cells (concentration 750*103 cells/ml) by lipophilic dye PKH26 (Sigma, USA) at the rat’s brain tissues after traumatic brain injury. Measurements of injury volume and counts of PKH26-stained cells were performed using ImageJ software (Wayne Rasband, National Institute of Mental Health, Bethesda, MD, USA). The statistical analysis was carried out using GraphPad Prism 8.2.0 program (GraphPad Software, Inc., USA). Results and Discussion. Administration of GPCs led to decreasing the damage volume. Significant decrease in sensorimotor deficit was observed on days 3, 7 and 14 after injury compared with the control group. Intra-arterial administration resulted in successful delivery of glial progenitor cells to brain tissue. Cells were detected in the cerebral cortex, hippocampus, and striatum on day 1, and were not observed on days 3 and 7 after administration. Conclusion. Intra-arterial administration of GPCs leads to efficient migration of cells into brain tissue. Glial progenitor cells therapy promotes neurorecovery processes after traumatic brain injury. This therapy is a promising treatment for traumatic brain injury.

About the authors

Anastasiia K. Sudina

Research Centre for Medical Genetics

Email: nastyasudina@gmail.com
ORCID iD: 0000-0003-3531-7684
SPIN-code: 5225-7878
Moscow, Russian Federation

Mikhail E. Ivanov

Lomonosov Moscow State University

Email: nastyasudina@gmail.com
ORCID iD: 0000-0002-5010-3919
SPIN-code: 8333-9897
Moscow, Russian Federation

Alexander M. Yurin

Lomonosov Moscow State University

Email: nastyasudina@gmail.com
ORCID iD: 0009-0000-9909-0971
Moscow, Russian Federation

Andrey V. Makarov

Pirogov Russian National Research Medical University

Email: nastyasudina@gmail.com
ORCID iD: 0000-0002-5847-567X
SPIN-code: 3534-3764
Moscow, Russian Federation

Timur Kh. Fatkhudinov

Avtsyn Research Institute of Human Morphology of FSBSI «Petrovsky National Research Centre of Surgery»

Email: nastyasudina@gmail.com
ORCID iD: 0000-0002-6498-5764
SPIN-code: 7919-8430
Moscow, Russian Federation

Dmitry V. Goldstein

Research Centre for Medical Genetics

Email: nastyasudina@gmail.com
ORCID iD: 0000-0003-2438-1605
SPIN-code: 7714-9099
Moscow, Russian Federation

Diana I. Salikhova

Avtsyn Research Institute of Human Morphology of FSBSI «Petrovsky National Research Centre of Surgery»

Author for correspondence.
Email: nastyasudina@gmail.com
ORCID iD: 0000-0001-7842-7635
SPIN-code: 1436-5027
Moscow, Russian Federation

References

  1. James SL, Theadom A, Ellenbogen RG, Bannick MS, Montjoy-­Venning W, Lucchesi LR et al. Global, regional, and national burden of traumatic brain injury and spinal cord injury, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. The Lancet. Neurology. 2019;18(1):56-87. doi: 10.1016/S1474-4422(18)30415-0
  2. Dewan MC, Rattani A, Gupta S, Baticulon RE, Hung YC, Punchak M, Agrawal A, Adeleye AO, Shrime MG, Rubiano AM, Rosenfeld JV, Park KB. Estimating the global incidence of traumatic brain injury. Journal of Neurosurgery. 2019;130(4):1080-1097. doi: 10.3171/2017.10.JNS17352
  3. Zhou Y, Shao A, Xu W, Wu H, Deng Y. Advance of Stem Cell Treatment for Traumatic Brain Injury. Frontiers in Cellular Neuroscience. 2019;13:301. doi: 10.3389/fncel.2019.00301
  4. Shevelev OA, Smolensky AV, Petrova MV, Mengistu EM, Mengitsu AA, Vatsik-­Gorodetskaya MV, Khanakhmedova UG, Menzhurenkova DN, Vesnin SG, Goryanin II. Diagnostics and prevention of sports-­related traumatic brain injury complication. RUDN Journal of Medicine. 2023;27(2):254-264. doi: 10.22363/2313-0245-2023-27-2-254-264
  5. Wolf JA, Stys PK, Lusardi T, Meaney D, Smith DH. Traumatic Axonal Injury Induces Calcium Influx Modulated by Tetrodotoxin-­Sensitive Sodium Channels. The Journal of Neuroscience. 2001;21(6):1923-1930. doi: 10.1523/JNEUROSCI.21-06-01923.2001
  6. Barkhoudarian G, Hovda DA, Giza CC. The Molecular Pathophysiology of Concussive Brain Injury - an Update. Physical medicine and rehabilitation of North America. 2016;27(2):373-393. doi: 10.1016/j.pmr.2016.01.003
  7. Jackson ML, Srivastava AK, Cox CS. Preclinical progenitor cell therapy in traumatic brain injury: a meta-analysis. The Journal of Surgical Research. 2017;214:38-48. doi: 10.1016/j.jss.2017.02.078
  8. Eriksson PS, Perfilieva E, Björk-­Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH. Neurogenesis in the adult human hippocampus. Nature Medicine. 1998;4(11):1313-1317. doi: 10.1038/3305
  9. Gould E, Gross CG. Neurogenesis in Adult Mammals: Some Progress and Problems. The Journal of Neuroscience. 2002;22(3):619-623. doi: 10.1523/JNEUROSCI.22-03-00619.2002
  10. Goldman SA, Nedergaard M, Windrem MS. Glial progenitor cell-based treatment and modeling of neurological disease. Science. 2012;338(6106):491-495. doi: 10.1126/science.1218071.
  11. Llorente IL, Xie Y, Hatanaka EA, Cinkornpumin J, Miller DR, Lin Y, Lowry WE, Carmichael ST. Patient-­derivived glial enriched progenitors repair functional deficits due to white matter stroke and vascular dementia in rodents. Science translational medicine. 2021;13(590):1-18. doi: 10.1126/scitranslmed.aaz6747
  12. Porambo M, Phillips AW, Marx J, Ternes K, Arauz E, Pletnikov M, Wilson MA, Rothstein JD, Johnston MV, Fatemi A. Transplanted glial restricted precursor cells improve neurobehavioral and neuropathological outcomes in a mouse model of neonatal white matter injury despite limited cell survival. Glia. 2015;63(3):452-465. doi: 10.1002/glia.22764
  13. Muir KW, Bulters D, Willmot M, Sprigg N, Dixit A, Ward N, Tyrrell P, Majid A, Dunn L, Bath P, Howell J, Stroemer P, Pollock K, Sinden J. Intracerebral implantation of human neural stem cells and motor recovery after stroke: multicentre prospective single-arm study (PISCES-2). Journal of Neurology, Neurosurgery and Psychiatry. 2020;91(4):396-401. doi: 10.1136/jnnp-2019-322515
  14. Cherkashova E, Namestnikova D, Leonov G, Gubskiy I, Sukhinich K, Melnikov P, Chekhonin V, Yarygin K, Goldshtein D, Salikhova D. Comparative study of the efficacy of intra-­arterial and intravenous transplantation of human induced pluripotent stem cells-­derived neural progenitor cells in experimental stroke. Peer J. 2023;11:16358. doi: 10.7717/peerj.16358
  15. Namestnikova DD, Gubskiy IL, Salikhova DI, Leonov GE, Sukhinich KK, Melnikov PA, Vishnevskiy DA, Cherkasova EA, Gabashvili AN, Bukharova TB, Burunova VV, Fatkhudinov TKh, Chekhonin VP, Gubsky LV, Kiselev SL, Goldstein DV, Yarygin KN. Therapeutic efficacy of intra-­arterial administration of induced pluripotent stem cells-­derived neural progenitor cells in acute experimental ischemic stroke in rats. Russian Journal of Transplantology and Artificial Organs. 2019;21(1):153-164. doi: 10.15825/1995-1191-2019-1-153-164 (In Russian).
  16. Salikhova D, Bukharova T, Cherkashova E, Namestnikova D, Leonov G, Nikitina M, Gubskiy I, Akopyan G, Elchaninov A, Midiber K, Bulatenko N, Mokrousova V, Makarov A, Yarygin K, Chekhonin V, Mikhaleva L, Fatkhudinov T, Goldshtein D. Therapeutic Effects of hiPSC-Derived Glial and Neuronal Progenitor Cells-­Conditioned Medium in Experimental Ischemic Stroke in Rats. International Journal of Molecular Sciences. 2021;22(9):4694. doi: 10.3390/ijms22094694
  17. Ma X, Aravind A, Pfister BJ, Chandra N, Haorah J. Animal Models of Traumatic Brain Injury and Assessment of Injury Severity. Molecular Neurobiology. 2019;56(8):5332-5345. doi: 10.1007/s12035-018-1454-5
  18. Chua JY, Pendharkar A V, Wang N, Choi R, Andres RH, Gaeta X, Zhang J, Moseley ME, Guzman R. Intra-­Arterial Injection of Neural Stem Cells using a Microneedle Technique does not Cause Microembolic Strokes. Journal of Cerebral Blood Flow & Metabolism. 2011;31(5):1263-1271. doi: 10.1038/jcbfm.2010.213
  19. Ryck MD, Reempts, Borgers M, Wauquier A, Janssen A. Photochemical stroke model: flunarizine prevents sensorimotor deficits after neocortical infarcts in rats. Stroke. 1989;20(10):1383-1390. doi: 10.1161/01.str.20.10.1383
  20. Salikhova DI, Golovicheva VV, Fatkhudinov TK, Shevtsova YA. Therapeutic Efficiency of Proteins Secreted by Glial Progenitor Cells in a Rat Model of Traumatic Brain Injury. International Journal of Molecular Sciences. 2023;24(15):12341. doi: 10.3390/ijms241512341
  21. Chopp M, Li Y. Treatment of neural injury with marrow stromal cells. The Lancet: Neurology. 2002;1(2):92-100. doi.org/10.1016/S1474-4422(02)00040-6
  22. Harrell CR, Volarevic A, Volaveric V. Therapeutic Effects of Mesenchymal Stem Cells on Cognitive Deficits. Handbook of Srem Cell Therapy. 2022;413-436. doi.org/10.1007/978-981-19-2655-6_15
  23. Lu D, Li Y, Wang L, Chen J, Mahmood A, Chopp M. Intraarterial Administration of Marrow Stromal Cells in a Rat Model of Traumatic Brain Injury. Journal of Neurotrauma. 2004;18(8):813-819. doi: 10.1089/089771501316919175
  24. Mahmood A, Lu D, Lu M, Chopp M. Treatment of traumatic brain injury in adult rats with intravenous administration of human bone marrow stromal cells. Neurosurgery. 2003;53(3):697-703. doi: 10.1227/01.neu.0000079333.61863.aa
  25. Silachev DN, Plotnikov EYu, Babenko VA, Danilina TI, Zorova LD, Pevzner IB, Zorov DB, Sukhikh GT. Intra-­Arterial Administration of Multipotent Mesenchymal Stromal Cells Promotes Functional Recovery of the Brain After Traumatic Brain Injury. Bulletin of experimental biology and medicine. 2015;159(4):528-533. doi: 10.1007/s10517-015-3009-3 (In Russian).
  26. Harting M, Jimenez F, Xue H, Fischer UM, Baumgartner J, Dash PK, Cox CS. Intravenous mesenchymal stem cell therapy for traumatic brain injury. Journal of Neurosurgery. 2009;110(6):1189-1197. doi: 10.3171/2008.9.JNS08158
  27. Lundberg J, Södersten E, Sundström E, Le Blanc K, Andersson T, Hermanson O, Holmin S. Targeted intra-­arterial transplantation of stem cells to the injured CNS is more effective than intravenous administration: engraftment is dependent on cell type and adhesion molecule expression. Cell Transplantation. 2012;21(1):333-43. doi: 10.3727/096368911X576036
  28. Bonilla C, Zurita M. Cell-based therapies for traumatic brain injury: therapeutic treatments and clinical trials. Biomedicines. 2021;9(6):669. doi: 10.3390/biomedicines9060669
  29. Carbonara M, Fossi F, Zoerle T, Ortolano F, Moro F, Pischiutta F, Rainer ER, Stocchetti N. Neuroprotection in traumatic brain injury: Mesenchymal stromal cells can potentially overcome some limitations of previous clinical trials. Frontiers in Neurology. 2018;24:9:885. doi: 10.3389/fneur.2018.00885
  30. Riess P, Zhang C, Saatman KE, Laurer HL, Longhi LG, Raghupathi R, Lenzlinger PM, Lifshitz J, Boockvar J, Neugebauer E, Snyder EY, McIntosh TK. Transplanted neural stem cells survive, differentiate, and improve neurological motor function after experimental traumatic brain injury. Neurosurgery. 2002;51(4)1043-1052. doi: 10.1097/00006123-200210000-00035
  31. Shindo T, Matsumoto Y, Wang Q, Nobuyuki K, Tamiya T, Nagao S. Differences in the neuronal survival, neuronal differentiation and neurological improvement after transplantation of neural stem cells between mild and severe experimental traumatic brain injury. The journal of medical investigation: JMI. 2006;53(1-2):42-51. doi: 10.2152/jmi.53.42
  32. Xiong LL, Hu Y, Zhang P, Zhang Z, Li LH, Gao GD, Zhou XF, Wang TH. Neural Stem Cell Transplantation Promotes Functional Recovery from Traumatic Brain Injury via Brain Derived Neurotrophic Factor-­Mediated Neuroplasticity. Molecular Neurobiology. 2018;55(3):2696-2711. doi: 10.1007/s12035-017-0551-1
  33. Saboori M, Riazi A, Taji M, Yadegafar G. Traumatic Brain Injury and Stem Cell Treatments: A Review of Recent 10 Years Clinical Trials. Clinical neurology and neurosurgery. 2024;239:108219. doi: 10.1016/j.clineuro.2024.108219
  34. Cox CS, Juranek J, Bedi S. Clinical trials in traumatic brain injury: cellular therapy and outcome measures. Transfusion. 2019;59:858-868. doi: 10.1111/trf.14834
  35. Schepici G, Silvestro S, Bramanti P, Mazzon E. Traumatic brain injury and stem cells: An overview of clinical trials, the current treatments and future therapeutic approaches. Medicina (Kaunas). 2020;56(3):137. doi: 10.3390/medicina56030137

Supplementary files

Supplementary Files
Action
1. Fig.1. Representative MRI images of the damage volume during modeling of TBI on the 14th day of the experiment.

Download (51KB)
2. Fig. 2. Histological study of GPCs migration in the brain

Download (182KB)

Copyright (c) 2024 Sudina A.K., Ivanov M.E., Yurin A.M., Makarov A.V., Fatkhudinov T.K., Goldstein D.V., Salikhova D.I.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies