ФОРМИРОВАНИЕ ФУНДАМЕНТАЛЬНЫХ ЗНАНИЙ СТУДЕНТОВ В ОБЛАСТИ МЕТОДОВ МАТЕМАТИЧЕСКОЙ ФИЗИКИПРИ ОБУЧЕНИИ ОБРАТНЫМ ЗАДАЧАМ ДЛЯ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

Обложка

Цитировать

Полный текст

Аннотация

При обучении обратным задачам для дифференциальных уравнений у бакалавров и магистрантов формируются фундаментальные знания в области методов математической физики, при помощи которых могут быть исследованы разнообразные математические задачи. Приводятся постановки учебных обратных задач для дифференциальных уравнений, для исследования которых применяются методы математической физики, а также краткая схема их исследования с формулировкой полученных результатов. Демонстрируются такие методы математической физики, как метод характеристик, метод Фурье, метод свертки, формула Кирхгофа, которые бакалавры и магистранты применяют при решении обратных задач на учебных занятиях.

Об авторах

В С Корнилов

Московский городской педагогический университет

Кафедра информатизации образования

Список литературы

  1. Арсенин В.Я. Методы математической физики и специальные функции. М.: Наука, 1984. 384 с.
  2. Бидайбеков Е.Ы., Корнилов В.С., Камалова Г.Б. Обучение будущих учителей математики и информатики обратным задачам для дифференциальных уравнений // Вестник Московского городского педагогического университета. Серия «Информатика и информатизация образования». 2014. № 3 (29). С. 57-69.
  3. Гельфанд И.М., Шилов Г.Е. Обобщенные функции и действия над ними. М.: Физматгиз, 1958. 440 с.
  4. Денисов А.М. Введение в теорию обратных задач: учебное пособие. М.: Изд-во МГУ им. М.В. Ломоносова, 1994. 207 с.
  5. Кабанихин С.И. Обратные и некорректные задачи: учебник для студентов вузов. Новосибирск: Сибирское научное издательство, 2009. 458 c.
  6. Корнилов В.С. Некоторые обратные задачи для волновых уравнений: монография. Новосибирск: СибУПК, 2000. 252 с.
  7. Корнилов В.С. Некоторые обратные задачи идентификации параметров математических моделей: учебное пособие. М.: МГПУ, 2005. 359 с.
  8. Корнилов В.С. Обучение обратным задачам для дифференциальных уравнений как фактор гуманитаризации математического образования: монография. М.: МГПУ, 2006. 320 с.
  9. Корнилов В.С. Реализация дидактических принципов обучения при использовании образовательных электронных ресурсов в курсе «Обратные задачи для дифференциальных уравнений» // Вестник Российского университета дружбы народов. Серия «Информатизация образования». 2006. № 1 (3). С. 40-44.
  10. Корнилов В.С. История развития теории обратных задач для дифференциальных уравнений - составляющая гуманитарного потенциала обучения прикладной математике // Вестник Московского городского педагогического университета. Серия «Информатика и информатизация образования». 2009. № 1 (17). С. 108-113.
  11. Корнилов В.С. Теоретические основы информатизации прикладного математического образования: монография. Воронеж: Научная книга, 2011. 140 с.
  12. Корнилов В.С. Психологические аспекты обучения студентов вузов фрактальным множествам // Вестник Российского университета дружбы народов. Серия «Информатизация образования». 2011. № 4. С. 79-82.
  13. Корнилов В.С. Обратные задачи в содержании обучения прикладной математике // Вестник Российского университета дружбы народов. Серия «Информатизация образования». 2014. № 2. С. 109-118.
  14. Корнилов В.С. Обучение студентов обратным задачам для дифференциальных уравнений как фактор формирования компетентности в области прикладной математики // Вестник Российского университета дружбы народов. Серия «Информатизация образования». 2015. № 1. С. 63-72.
  15. Корнилов В.С. Обучение студентов обратным задачам математической физики как фактор формирования фундаментальных знаний по интегральным уравнениям // Бюллетень лаборатории математического, естественнонаучного образования и информатизации. Рецензируемый сборник научных трудов. Самара: Самарский филиал МГПУ, 2015. Том.VI. С. 251-257.
  16. Котляр Я.М. Методы математической физики и задачи гидроаэродинамики. М.: Высшая школа, 1991. 208 с.
  17. Лаврентьев М.М., Романов В.Г., Шишатский С.П. Некорректные задачи математической физики и анализа. М.: Наука, 1980. 286 с.
  18. Романов В.Г. Обратные задачи для дифференциальных уравнений. Новосибирск: НГУ, 1973. 252 с.
  19. Романов В.Г. Обратные задачи математической физики. М.: Наука, 1984. 264 с.
  20. Танана В.П. Методы решения операторных уравнений. М.: Наука, 1981. 157 с.
  21. Тихонов А.Н., Самарский А.А. Уравнения математической физики. М.: Наука, 2004. 798 с.
  22. Федеральные государственные образовательные стандарты высшего профессионального образования по направлениям подготовки бакалавриата. URL: http://минобрнауки.рф/%D0%B4%D0%BE%D0%BA%D1%83%D0%BC%D0%B5%D0%BD%D1%82%D1%8B/924
  23. Федеральные государственные образовательные стандарты высшего профессионального образования по направлению магистратуры. URL: http://fgosvo.ru/fgosvpo/8/6/2/30
  24. Яхно В.Г. Обобщенные функции в обратных задачах для дифференциальных уравнений: методические указания. Новосибирск: НГУ, 1987. 24 с.

© Корнилов В.С., 2016

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах