The nested planar central configurations of a trapezoid form in classical and generalized versions of the general (4n+1)-body problem

Cover Page

Cite item

Abstract

The study of central configurations, whose concepts and definitions were already formulated by the classics of celestial mechanics - Euler, Lagrange, Laplace and Liouville in the XVIII-XIX centuries, is of interest not only for celestial mechanics, but also for many sections of mathematical analysis, differential equations, analytical mechanics, stellar dynamics and space flight dynamics. In recent decades, there have been opportunities to use the concept of central configurations also in theoretical physics, chemistry, crystallography, etc. We consider planar central configurations, called nested, consisting of polygons sequentially nested one into another, at the vertices of which there are bodies (material points). The existence of nested planar central configurations of trapezoidal type with a sphere in the centre is proved. Early, it was found that abovementioned isolated central configurations exist in the heliocentric rotated coordinate systems. It was supposed only the Newton’s law of attraction is acting between bodies. The Maple software is used to derive the solution of this problem.

About the authors

Yulianna V. Perepelkina

Russian Institute for Scientific and Technical Information of Russian Academy of Sciences

Author for correspondence.
Email: amadeycity@yandex.ru
ORCID iD: 0000-0001-8115-8253

Candidate of Phys.-Math. Sci., Deputy Head of the Mechanics Department

Moscow, Russian Federation

Alexander N. Zadiranov

State Fire Academy of EMERCOM of Russia

Email: zadiranov@mail.ru
ORCID iD: 0000-0001-7787-8290

Doctor of Technical Sciences, Professor of Combustion Behavior and Environmental Safety Department, Educational and Scientific Complex of Combustion Processes and Environmental Safety

Moscow, Russian Federation

References

  1. Moeckel R. Central configurations. Scholarpedia. 2014;9(4):10667. https://doi.org/10.4249/scholarpedia.10667
  2. Hoppe R. Erweiterung der bekanten Speciallosung des Dreikörper-problems. Grünert Archiv der Mathematik und Physik. 1879;64:218-223.
  3. Lehmann-Filhés R. Über zwei Fälle des Vielkörperproblems. Astronomische Nachrichten. 1891;127(3033): 137-144.
  4. Dziobek O. Über einen merkwürdigen Fall des Vielkörperprobems. Astronomische Nachrichten. 1900; 152(3627):33-46.
  5. Andoyer H. Sur l’équilibre relatif de n corps. Bulletin astronomique, Observatoire de Paris. 1906;23: 50-59.
  6. Andoyer H. Sur les solution periodique voisines des positions d’équilibre relatif, dans le problème des n corps. Bulletin astronomique, Observatoire de Paris. 1906;23:129-146. Available from: https://www.persee.fr/doc/bastr_0572-7405_1906_num_23_1_12318 (accessed: 12.09.2022)
  7. Longley WR. Some particular solutions in the problem of n bodies. Bull. of the American Mathematical Society. 1907;13(7):324-335.
  8. MacMillan WD, Bartky W. Permanent configurations in the problem of four bodies. Transactions of the American Mathematical Society. 1932;34(4):838-874.
  9. Meyer G. Solutions voisines des solutions de Lagrange dans le problème des n corps. Annales de l’Observatoire de Bordeaux.1933;17:77-252. Available from.(accessed: 12.09.2022).
  10. Williams WL. Permanent configurations in the problem of five bodies. Transactions of the American Mathematical Society. 1938;44(3):562-579. Available from: https://www.jstor.org/stable/i308230 (accessed: 12.09. 2022).
  11. Brumberg VA. Permanent configurations in the problem of four bodies and it’s stability. Astronomicheskij zhurnal [Astronomical zhurnal]. 1957;4(1):55-74. (In Russ.)
  12. Wintner A. The analytical foundations of celestial mechanics. Princeton: Princeton University Press; 1941.
  13. Elmabsout B. Sur l’existence de certaines configurations d’equilibre relatif dans le probleme desN corps. Celestial Mechanics. 1987;41:131-151. https://doi.org/10.1007/BF01238758
  14. Elmabsout B. Nouvelles configurations d’équillibre relatif dans le problème des n corps. I. Comptes Rendus de l’Academie des Sciences de Paris. 1991;312 (2):467-472.
  15. Grebenikov EА. The existence of the exact symmetric solutions in the plane Newton problem of many bodies. Matematicheskoe modelirovanie [Mathematical modeling]. 1988;10(8):74-80. (In Russ.)
  16. Grebenikov ЕА. Mathematical problems of homographic dynamic. Moscow: MAX Press; 2010. (In Russ.)
  17. Beltritti G, Mazzone F, Oviedo M. The Sitnikov problem for several primary bodies configurations. Celestial Mechanics and Dynamical Astronomy. 2018; 130:45. https://doi.org/10.1007/s10569-018-9838-4
  18. Marchesin M, Vidal C. Spatial restricted rhomboidal five-body problem and horizontal stability of its periodic solutions. Celestial Mechanics and Dynamical Astronomy. 2013;115(3):261-279. https://doi.org/10.1007/ s10569-012-9462-7
  19. Rivera A. Periodic solutions in the generalized Sitnikov (n+1)-body problem. SIAM Journal on Applied Dynamical Systems. 2013;12(3):1515-1540. https://doi.org/10.1137/12088387
  20. Kashif A, Shoaib M, Sivasankaran A. Central Configurations of an Isosceles Trapezoidal Five-Body Problem. In: Corbera M, Cors J, Llibre J, Korobeinikov A. (eds.) Extended Abstracts Spring 2014. Trends in Mathematics (vol. 4, p. 71-76). Birkhäuser, Cham; 2015. https://doi.org/10.1007/978-3-319-22129-8_13
  21. Shoaib M, Kashif AR, Szücs-Csillik I. On the planar central configurations of rhomboidal and triangular fourand five-body problems // Astrophysics and Space Science. 2017;362:182. https://doi.org/10.1007/s10509-017-3161-5
  22. Butikov E. Motions of Celestial Bodies: Computer simulations. Bristol, UK, IOP Publ.; 2014.
  23. Llibre J, Moeckel R, Simó C. Central Configurations, Periodic Orbits, and Hamiltonian Systems. Advanced Courses in Mathematics - CRM Barcelona. Birkhäuser, Basel; 2015. https://doi.org/10.1007/978-3-0348-0933-7
  24. Doicu A, Zhao L, Doicu A. A stochastic optimization algorithm for analyzing planar central and balanced configurations in the n-body problem. Celestial Mechanics and Dynamical Astronomy. 2022;134:29. https://doi.org/10.1007/s10569-022-10075-7
  25. Corbera M, Delgrano J, Lliobre J. On the Existence of Central Configurations of p Nested n-gons. Qualitative Theory of Dynamical Systems. 2009;8:255 https://doi.org/10.1007/s12346-010-0004-y
  26. Hampton M. Planar N-body central configurations with a homogeneous potential. Celestial Mechanics and Dynamical Astronomy. 2019;131:20. https://doi.org/10.1007/s10569-019-9898-0
  27. Montaldi J. Existence of symmetric central configurations. Celestial Mechanics and Dynamical Astronomy. 2015;122:405-418. https://doi.org/10.1007/s10569-015-9625-4
  28. Moczurad M, Zgliczyński P. Central configurations in planar n-body problem with equal masses for n = 5, 6, 7. Celestial Mechanics and Dynamical Astronomy. 2019;131:46. https://doi.org/10.1007/s10569-019 9920-6
  29. Perepelkina YuV. An unified approach to the linear stability investigation of some classic and generalized planar central configurations of celestial mechanics. Part 2. Numeric investigations. International Journal on Pure and Applied Mathematics, Classical and Celestial Mechanics, Cosmodynamics. 2013;2(3):5-34. (In Russ.)
  30. Fernandes AC, Mello LF. On Stacked Planar Central Configurations with Five Bodies when One Body is Removed. Theory of Dynamical Systems. 2013; 12:293-303. https://doi.org/10.1007/s12346-012-0084-y

Copyright (c) 2023 Perepelkina Y.V., Zadiranov A.N.

License URL: https://creativecommons.org/licenses/by-nc/4.0/legalcode

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies