Information flows research in trunked radio network for aircraft ground handling operations

Cover Page

Cite item

Abstract

The information flows of communication systems during aircraft ground handling operations at one of the largest airports in the Russian Federation are studied to determine the minimum sufficient resource of the radio communication system as one of the communication channels. The technological schedule of aircraft maintenance is given and its example shows the complexity and parallelism of aircraft maintenance processes. Also on the basis of the technological maintenance schedule the list of necessary communication resources with description of specific works of each group and their expected load is developed. Three stages of research for modernization of communications are described. At the first stage, the available and necessary conditions for the functioning of communication systems under conditions of frequency resource shortage are established and the communication technology to be implemented is determined (in this case it referred to the construction of DMR Tier III radio network). At the second stage, statistics on the use of the radio network is accumulated, specific tasks, the work of groups, and their radio exchange is analyzed. At the third stage, based on the data obtained earlier, a conclusion is made about certain weaknesses of the system, recommendations are developed for its modification to reduce the number of customer service failures and improve the efficiency of aircraft ground handling operations, as well as for the work of emergency and security services. The study showed several key indicators, namely: the availability of communication channels, the number of communication channels to fulfil the technological service schedule, retention of the communication channel, and strict adherence to negotiation regulations.

About the authors

Andrey V. Ilchenko

Moscow Aviation Institute (National Research University)

Author for correspondence.
Email: ilchenkoav@mai.ru
ORCID iD: 0009-0004-0745-2285

assistant, chair 307, faculty of Control Systems, Informatics and power engineering

Moscow, Russian Federation

Tatiana E. Ilchenko

LLC “AFLT Systems”

Email: t.ilchenko@me.com
ORCID iD: 0009-0005-9440-5299

Head of Department

Moscow, Russian Federation

References

  1. Tabassum A, He B. Dynamic control allocation between onboard and delayed remote control for unmanned aircraft system detect-and-avoid. Aerospace Science and Technology. 2022;121:107323. https://doi.org/10.1016/j.ast.2021.107323
  2. Palacios R, Hansman J, Short-term consequences of radio communications blackout on the U.S. National Airspace System. Aerospace Science and Technology. 2013;29:426–433. https://doi.org/10.1016/j.ast.2013.04.012
  3. Vasilev VN, Grigoriev VA, Khvorov IA, Raspaev YuA. Communication systems in transport: development trends and regulation tasks. Elektrosvyaz. 2016; 2:18–23. (In Russ.) EDN: VOCABB
  4. Demichev MS, Gaipov KE, Demicheva AA, Narozhny AI. Radio frequency planning of a radio network with the exclusion of radio wave interference. Cybernetics and Programming. 2017;4:1–23. (In Russ.) EDN: ZFIDJJ
  5. Ilchenko AV, Butakova MA, Labunko OS. Operational radio communication control method during the Formula 1 Russian Grand Prix. Elektrosvyaz. 2018;6:49–52. (In Russ.) EDN: XQLDJJ
  6. Bedilo MV, Oleinikov VT, Petrenko AN, Strakholis AA. Technology for constructing a field multiservice data transmission network at fire extinguishing and emergency rescue operations. Civil Security Technologies. 2022;2(72):31–36. (In Russ.) https://elibrary.ru/ item.asp?id=48679004
  7. Prospects for the introduction of broadband services in professional mobile radio networks based on LTE. (In Russ.) Available from: http://www.nnit.ru/analytics/a157764/ (accessed: 24.03.2023).
  8. Ahmad A, Cheema AA, Finlay D. A survey of radio propagation channel modelling for low altitude flying base stations. Computer Networks. 2020;171:107122. https://doi.org/10.1016/j.comnet.2020.107122
  9. Tuna G, Nefzi B, Conte G. Unmanned aerial vehicle-aided communications system for disaster. Journal of Network and Computer Applications. 2014;41:27–36. https://doi.org/10.1016/j.jnca.2013.10.002
  10. Gulfam S.M., Nawaz S.J., Ahmed A., Patwary M.N. Angle and time of arrival characteristics of 3D air-toground radio propagation environments. Computer Communications. 2017;112:22–37. https://doi.org/10./1016/j.comcom.2017.08.011
  11. Larkovich MA, Doronichev AV. Digital control of technological processes of ground handling of aircraft. Innovations of the young for scientific, technical and socio-economic development of the Russian Far East: materials of the 80th Interuniversity student scientific and practical conference. Khabarovsk, 2022. (In Russ.) EDN: LKZGXP
  12. Tabares DA, Mora-Camino F, Drouin A. A multitime scale management structure for airport ground handling automation. Journal of Air Transport Management. 2021;90:101959. https://doi.org/10.1016/j.jairtraman.2020.101959
  13. Chen S-T, Ermiş G, Sharpanskykh A. Multiagent planning and coordination for automated aircraft ground handling. Robotics and Autonomous Systems. 2023;167:104480. https://doi.org/10.1016/j.robot.2023.104480
  14. Adler N, Brudner A, Gallotti R, Privitera F, Ramasco JJ. Does big data help answer big questions? The case of airport catchment areas & competition. Transportation Research Part B: Methodological. 2022;166: 444–467. https://doi.org/10.1016/j.trb.2022.10.013
  15. Andreatta G, De Giovanni L, Michele Monaci M. A Fast Heuristic for Airport Ground-Service Equipment– and–Staff Allocation. Procedia — Social and Behavioral Sciences. 2014;108:26–36. https://doi.org/10.1016/j.sbspro.2013.12.817
  16. Fitouri-Trabelsi S, Cosenza CAN, Mora-Cami F. Ground Handling Management at Airports with Fuzzy Information. IFAC Proceedings Volumes. 2013;46:373 https://doi.org/10.3182/20130911-3-BR-3021.00016
  17. Liu X, Wang Q, Zou C, Yu M, Liao D. Edge Intelligence For Smart Airport Runway: Architectures And Enabling Technologies. Computer Communications. 2022;195:323–333. https://doi.org/10.1016/j.comcom.2022. 09.003
  18. Ma J, Chen X, Xing Z, Zhang Y, Yu L. Improving the performance of airport shuttle through demandresponsive service with dynamic fare strategy considering mixed demand. Journal of Air Transport Management. 2023;112:102459. https://doi.org/10.1016/j.jairtraman.2023.102459
  19. Kalakou S, Psaraki-Kalouptsidi V, Moura F. Future airport terminals: New technologies promise capacity gains. Journal of Air Transport Management. 2015; 42:203–212. https://doi.org/10.1016/j.jairtraman.2014.10.005
  20. Malik H, Tahir S, Tahir H, Ihtasham M, Khan F. A Homomorphic approach for security and privacy Preservation of smart airports. Future Generation Computer Systems. 2023;141:500–513. https://doi.org/10.1016/j.future.2022.12.005
  21. Kovacikova K, Novak A, Kovacikova M, Sedlackova AN. Smart parking as a part of Smart airport concept. Transportation Research Procedia. 2022;65:70– 77. https://doi.org/10.1016/j.trpro.2022.11.009
  22. Rubio-Andrada L, Celemin-Pedroche MS, EscatCortes M-D, Jimenez-Crisostomo A. Passengers satisfaction with the techno-logies used in smart airports: An empirical study from a gender perspective. Journal of Air Transport Management. 2023;107:102347. https://doi.org/10.1016/j.jairtraman. 2022. 102347
  23. Ilchenko AV. Certificate of state registration of the computer program 2020662503 Russian Federation. CMSS data converter: 2020661140: App. 09.28.2020: publ. 10.14.2020. (In Russ.)

Copyright (c) 2023 Ilchenko A.V., Ilchenko T.E.

License URL: https://creativecommons.org/licenses/by-nc/4.0/legalcode

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies