Existence of a renormalized solution to a nonlinear elliptic equation with L1-data in the space Rn
- Authors: Kozhevnikova L.M.1,2
-
Affiliations:
- Ufa University of Science and Technology
- Elabuga Institute of Kazan Federal University
- Issue: Vol 70, No 2 (2024): Functional spaces. Differential operators. Problems of mathematics education
- Pages: 278-299
- Section: Articles
- URL: https://journals.rudn.ru/CMFD/article/view/39911
- DOI: https://doi.org/10.22363/2413-3639-2024-70-2-278-299
- EDN: https://elibrary.ru/YKDZHU
Cite item
Full Text
Abstract
We consider a second-order quasilinear elliptic equation with an integrable right-hand side in the space Rn. Restrictions on the structure of the equation are formulated in terms of a generalized N -function. In the nonreflexive Muzilak-Orlicz-Sobolev spaces, the existence of a renormalized solution in the space Rn is proved.
About the authors
L. M. Kozhevnikova
Ufa University of Science and Technology; Elabuga Institute of Kazan Federal University
Author for correspondence.
Email: kosul@mail.ru
Ufa, Russia; Elabuga, Russia
References
- Вильданова В.Ф., Мукминов Ф.Х. Энтропийное решение для уравнения с мерозначным потенциалом в гиперболическом пространстве// Мат. сб.-2023.- 214, № 11.-С. 37-62.
- Данфорд Н., Шварц Дж.Т. Линейные операторы. Общая теория.-M.: ИЛ, 1962.
- Кожевникова Л.М. Существование энтропийного решения нелинейной эллиптической задачи в неограниченной области// Теор. мат. физ.- 2024.- 218, № 1.- С. 124-148.
- Кожевникова Л.М. Энтропийные и ренормализованные решения анизотропных эллиптических уравнений с переменными показателями нелинейностей// Мат. сб.-2019.- 210, № 3.- С. 131-161.
- Кожевникова Л.М., Кашникова А.П. Существование решений нелинейных эллиптических уравнений с данными в виде меры в пространствах Музилака-Орлича// Мат. сб.- 2022.- 213, № 4.- C. 38-73.
- Ahmdatt T., Elemine Vall M.S.B., Benkirane A., Touzani A. Existence of renormalized solutions for a nonlinear elliptic equation in Musielak framework and L1// An. Univ. Craiova Ser. Mat. Inform.- 2017.- 44, № 2.- С. 190-213.
- Ahmida Y., Chlebicka I., Gwiazda P., Youssfi A. Gossez’s approximation theorems in Musielak-Orlicz- Sobolev spaces// J. Funct. Anal. -2018.-275, № 9.- С. 2538-2571.
- Ait Khellou M., Benkirane A. Renormalized solution for nonlinear elliptic problems with lower order terms and L1 data in Musielak-Orlicz spaces// An. Univ. Craiova Ser. Mat. Inform.- 2016.-43, № 2.- С. 164- 187.
- Ait Khelloul M., Douiri S.M., El Hadfi Y. Existence of solutions for some nonlinear elliptic equations in Musielak spaces with only the log-H¨older continuity condition// Mediterr. J. Math.- 2020.- 17, № 1.- С. 1-18.
- Benkirane A., Sidi El Vally M. An existence result for nonlinear elliptic equations in Musielak-Orlicz- Sobolev spaces// Bull. Belg. Math. Soc. Simon Stevin. -2013.- 20.- С. 57-75.
- Benkirane A., Sidi El Vally M. Variational inequalities in Musielak-Orlicz-Sobolev spaces// Bull. Belg. Math. Soc. Simon Stevin. -2014.-21, № 5. -С. 787-811.
- Chlebicka I. Measure data elliptic problems with generalized Orlicz growth// Proc. Roy. Soc. Edinburgh Sect. A. -2023.- 153, № 2.- С. 588-618.
- Douiri S.M., Benkirane A., Ait Khellou M., El Hadfi Y. Nonlinear unilateral problems without sign condition in Musielak spaces// Anal. Math. Phys.- 2021.-11, № 2.- С. 66.
- Elarabi R., Rhoudaf M., Sabiki H. Entropy solution for a nonlinear elliptic problem with lower order term in Musielak-Orlicz spaces// Ric. Mat.- 2018.- 67, № 2.- С. 549-579.
- Elemine Vall M.S.B., Ahmedatt T., Touzani A., Benkirane A. Existence of entropy solutions for nonlinear elliptic equations in Musielak framework with L1 data// Bol. Soc. Parana. Mat.- 2018.- 36, № 1.- С. 125-150.
- Gwiazda P., Skrzypczaka I., Zatorska-Goldstein A. Existence of renormalized solutions to elliptic equation in Musielak-Orlicz space// Differ. Equ. - 2018.- 264.- С. 341-377.
- Kozhevnikova L.M. On solutions of anisotropic elliptic equations with variable exponent and measure data// Complex Var. Elliptic Equ. - 2020.- 65, № 3.-С. 337-367.
- Kozhevnikova L.M. On solutions of elliptic equations with variable exponents and measure data in Rn// В сб.: «Differential Equations on Manifolds and Mathematical Physics». -Cham: Birkh¨auser, 2021.- С. 221-239.
- Kozhevnikova L.M. On solutions of nonlinear elliptic equations with L1-data in unbounded domains// Lobachevskii J. Math. -2023.-44, № 5. -С. 1879-1901.
- Li Y., Fengping Y., Shulin Zh. Entropy and renormalized solutions to the general nonlinear elliptic equations in Musielak-Orlicz spaces// Nonlinear Anal. Real World Appl. -2021.-61, № 2. -С. 1-20.
- Musielak J. Orlicz spaces and modular spaces.-Berlin: Springer, 1983.
- Talha A., Benkirane A. Strongly nonlinear elliptic boundary value problems in Musielak-Orlicz spaces// Monatsh. Math. -2018.- 186, № 4.-С. 745-776.