Analytic Detection in Homotopy Groups of Smooth Manifolds

Cover Page

Cite item

Abstract

In this paper, for the mapping of a sphere into a compact orientable manifold  SnM, n1, we solve the problem of determining whether it represents a nontrivial element in the homotopy group of the manifold πn(M) πn(M ). For this purpose, we consistently use the theory of iterated integrals developed by K.-T. Chen. It should be noted that the iterated integrals as repeated integration were previously meaningfully used by Lappo-Danilevsky to represent solutions of systems of linear differential equations and by Whitehead for the analytical description of the Hopf invariant for mappings f: S2n-1Sn, n2. We give a brief description of Chen’s theory, representing Whitehead’s and Haefliger’s formulas for the Hopf invariant and generalized Hopf invariant. Examples of calculating these invariants using the technique of iterated integrals are given. Further, it is shown how one can detect any element of the fundamental group of a Riemann surface using iterated integrals of holomorphic forms. This required to prove that the intersection of the terms of the lower central series of the fundamental group of a Riemann surface is a unit group.

 

 

About the authors

I. S. Zubov

State Socio-Humanitarian University

Author for correspondence.
Email: reestr_rr@mail.ru
Kolomna, Russia

References

  1. Дубровин Б. А. Уравнение Кадомцева-Петвиашвили и соотношения между периодами голоморфных дифференциалов на римановых поверхностях// Изв. АН СССР. Сер. мат. - 1981. - 45, № 5. - С. 1015- 1028.
  2. Лаппо-Данилевский И. А. Применение функций от матриц к теории линейных систем обыкновенных дифференциальных уравнений. - М.: Изд-во ГИТТЛ, 1957.
  3. Лексин В. А. Метод Лаппо-Данилевского и тривиальность пересечения радикалов членов нижнего центрального ряда некоторых фундаментальных групп// Мат. заметки. - 2006. - 79, № 4. - С. 577- 580.
  4. Новиков С. П. Аналитический обобщенный инвариант Хопфа. Многозначные функционалы// Усп. мат. наук. - 1984. - 39, № 5. - С. 97-106.
  5. Хатчер A. Алгебраическая топология. - М.: МЦНМО, 2011.
  6. Хейн Р. М. Итерированные интегралы и проблема гомотопических периодов. - М.: Наука, 1988.
  7. Chen K.-T. Algebras of iterated path integrals and fundamental groups// Trans. Am. Math. Soc. - 1971. - 156. - С. 359-379.
  8. Chen K.-T. Iterated integrals of differential forms and loop space homology// Ann. of Math. (2). - 1973. - 97. - С. 217-246.
  9. Chen K.-T. Iterated path integrals// Bull. Am. Math. Soc. - 1977. - 83, № 5. - С. 831-879.
  10. Haefliger A. Whitehead products and differential forms// В сб.: «Differential Topology, Foliations and Gelfand-Fuks Cohomology». - Berlin-Heidelberg: Springer, 1978. - С. 13-24.
  11. Hain R. M. On a generalization of Hilbert’s 21st problem// Ann. Sci. E´ c. Norm. Supe´r. (4).- 1986.- 19, № 4. - С. 609-627.
  12. Manin Yu. I. Non-commutative generalized Dedekind symbols// Pure Appl. Math. Q. - 2014. - 10,№ 1. - С. 245-258.
  13. Marin I. Residual nilpotence for generalizations of pure braid groups// arXiv:1111.5601 [math.GR]. - 2011.
  14. Whitehead J. H. C. An expression of Hopf’s invariant as an integral// Proc. Natl. Acad. Sci. USA. - 1947. - 33, № 5. - С. 117-123.
  15. Zubov I. S. Analytic detection of non-trivial elements in fundamental groups of Riemann surfaces// J. Phys. Conf. Ser. - 2019. - 1203. - 012099.

Copyright (c) 2021 Contemporary Mathematics. Fundamental Directions

License URL: https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies