On the construction of the square root for some differential operators

Cover Page

Cite item

Abstract

Using the Balakrishnan-Yosida approach to constructing fractional powers of linear operators in a Banach space by means of strongly continuous semigroups with densely defined generating operators, in this paper, a similar scheme is presented for constructing fractional powers of nondensely defined operators by means of semigroups with a summable singularity. It is found that the newly constructed semigroups also have a singularity at zero, and their sharp estimate is established, related to the order of the singularity of the original semigroup and the fractional power of the constructed operator, in particular, the square root. As an example, the obtained results are applied to semigroups with a singularity given in the paper [3] and in the doctoral dissertation of Yu. T. Silchenko, and a square root is also constructed for a nondensely defined operator.

About the authors

V. A. Kostin

Voronezh State University

Author for correspondence.
Email: vlkostin@mail.ru
Voronezh, Russia

D. V. Kostin

Voronezh State University

Email: dvk605@mail.ru
Voronezh, Russia

M. N. Silaeva

Voronezh State University

Email: marinanebolsina@yandex.ru
Voronezh, Russia

References

  1. Иосида К. Функциональный анализ.- М.: Мир, 1967.
  2. Крейн С.Г. Линейные дифференциальные уравнения в банаховом пространстве.- М.: Наука, 1967.
  3. Сильченко Ю.Т. Разрешимость задачи Коши для линейного уравнения второго порядка с неплотно заданными операторными коэффициентами, порождающими полугруппы с особенностями// Изв. вузов. Сер. Мат.- 1993.- № 11.-С. 40-49.
  4. Соболевский П.Е. О дифференциальных уравнениях второго порядка в банаховом пространстве// Докл. АН СССР. - 1962.- 146, № 4.- С. 774-777.
  5. Учайкин В.В. Методы дробных производных.-Ульяновск: Логос, 2002.

Copyright (c) 2024 Kostin V.A., Kostin D.V., Silaeva M.N.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies