On two methods of determining η-invariants of elliptic boundaryvalue problems
- Authors: Zhuikov K.N.1, Savin A.Y.1
-
Affiliations:
- RUDN University
- Issue: Vol 70, No 3 (2024)
- Pages: 403-416
- Section: Articles
- URL: https://journals.rudn.ru/CMFD/article/view/41140
- DOI: https://doi.org/10.22363/2413-3639-2024-70-3-403-416
- EDN: https://elibrary.ru/PSBLYU
Cite item
Full Text
Abstract
For a class of boundary-value problems with a parameter that are elliptic in the sense of Agranovich-Vishik, we establish the equality of the η-invariant defined in terms of the Melrose regularization and the spectral η-invariant of the Atiyah-Patodi-Singer type defined using the analytic continuation of the spectral η-function of the operator.
About the authors
K. N. Zhuikov
RUDN University
Author for correspondence.
Email: zhuykovcon@gmail.com
Moscow, Russia
A. Yu. Savin
RUDN University
Email: a.yu.savin@gmail.com
Moscow, Russia
References
- Агранович М.С., Вишик М.И. Эллиптические задачи с параметром и параболические задачи общего вида// Усп. мат. наук.- 1964.- 19, № 3.-С. 53-161.
- Бейтмен Г., Эрдейи А. Высшие трансцендентные функции, Т. 1.- М.: Наука, 1973.
- Жуйков К.Н., Савин А.Ю. Эта-инвариант эллиптических краевых задач с параметром// Соврем. мат. Фундам. направл.-2023.-69, № 4.- С. 599-620.
- Кондратьев В.А. Краевые задачи для эллиптических уравнений в областях с коническими и угловыми точками// Тр. Моск. мат. об-ва.-1967.- 16.-С. 209-292.
- Atiyah M., Patodi V., Singer I. Spectral asymmetry and Riemannian geometry. I// Math. Proc. Cambridge Philos. Soc.- 1975.- 77.- С. 43-69.
- Atiyah M., Patodi V., Singer I. Spectral asymmetry and Riemannian geometry. II// Math. Proc. Cambridge Philos. Soc.- 1976.- 78.- С. 405-432.
- Atiyah M., Patodi V., Singer I. Spectral asymmetry and Riemannian geometry. III// Math. Proc. Cambridge Philos. Soc.- 1976.- 79.-С. 71-99.
- Fedosov B., Schulze B.-W., Tarkhanov N. The index of elliptic operators on manifolds with conical points// Selecta Math. (N.S.). -1999.- 5, № 4.-С. 467-506.
- Fedosov B., Schulze B.-W., Tarkhanov N. A general index formula on toric manifolds with conical points// В сб.: «Approaches to singular analysis».-Basel: Birkh¨auser, 2001.- С. 234-256.
- Gilkey P.B., Smith L. The eta invariant for a class of elliptic boundary value problems// Commun. Pure Appl. Math. -1983.- 36.- С. 85-132.
- Gilkey P.B., Smith L. The twisted index problem for manifolds with boundary// J. Differ. Geom.- 1983.- 18, № 3.- С. 393-444.
- Lesch M. Differential Operators of Fuchs Type, Conical Singularities, and Asymptotic Methods.- Stuttgart-Leipzig: B.G. Teubner Verlag, 1997.
- Lesch M., Pflaum M. Traces on algebras of parameter dependent pseudodifferential operators and the eta-invariant// Trans. Am. Math. Soc. -2000.- 352, № 11.- С. 4911-4936.
- Lidskii V.B. Non-selfadjoint operators with a trace// Dokl. Akad. Nauk SSSR. -1959.- 125.-С. 485- 487.
- Melrose R. The eta invariant and families of pseudodifferential operators// Math. Research Lett. - 1995.- 2, № 5.-С. 541-561.