Dependenceof the computed tsunami wave heights on the grid resolution

Cover Page

Cite item

Abstract

Tsunami after the March 11, 2011, as well as the other recent events, have shown that destructive tsunami waves generated by earthquakes continue to pose a significant risk to coastal populations adjacent to subduction zones, where most of tsunami sources are located. In some places along these coasts, the tsunami run-up heights can reach 30 m or more, causing destruction and casualties. However, the wave heights maxima are distributed very nonuniformly along the coast with sharp local peaks in amplitude. Since for near-shore events the tsunami wave arrival time at the nearest coastal point after an earthquake is on the order of 20 minutes, a quick (within 1-2 minutes) correct assessment of the distribution of maximum wave heights along the coast will allow warning services take evacuation actions exactly where needed. Modern modelling tools allowing quickly calculate wave parameters with sufficient accuracy if the wave characteristics at the initial time instance are known. However, this requires calculations in spatial steps of several meters, which is time-consuming even when using supercomputers. In addition, in the case of a strong earthquake, power outages are possible, which does not guarantee that numerical modelling can be started immediately after the seismic event. The use of large, hundreds of meters resolution calculation grid does not allow estimate correctly the tsunami wave heights near the shore. Fine grids entail the growth of the duration of computing time. The resolution of this contradiction dictates the necessity to choose the optimal correlation between grid spacing (results precision) and calculation time. In this paper the dependence of the calculated tsunami wave parameters depending on the grid spacing is studied. Obtained results will be used for optimal selection of application zones of meshes with different spacing. Computational experiments were carried out on a personal computer (PC) using hardware acceleration - a specialized FPGA-based microchip (FPGA being Field Programmable Gates Array), used with the computer as a coprocessor. As a result, a sufficiently high performance of calculations is achieved. Calculation of wave parameters near the shore on the computational grid of 3000×2500 nodes takes less than 1 min. In addition, the proposed solution does not depend on possible power supply failures.

About the authors

M. M. Lavrentiev

Institute of Automation and Electrometry SB RAS

Author for correspondence.
Email: mmlavrentiev@gmail.com
Novosibirsk, Russia

K. F. Lysakov

Institute of Automation and Electrometry SB RAS

Email: lysakov@sl.iae.nsk.su
Novosibirsk, Russia

An. G. Marchuk

Institute of Computational Mathematics and Mathematical Geophysics SB RAS

Email: mag@omzg.sscc.ru
Novosibirsk, Russia

K. K. Oblaukhov

Institute of Automation and Electrometry SB RAS

Email: oblaukhov.konstantin@gmail.com
Novosibirsk, Russia

M. Yu. Shadrin

Institute of Automation and Electrometry SB RAS

Email: mikesha@sl.iae.nsk.su
Novosibirsk, Russia

References

  1. Giga E., Spillane M., Titov V., Chamberlin C., Newman J. Development of the forecast propagation database for NOAA’s short-term inundation forecast for tsunamis (SIFT)// NOAA Tech. Memo. OAR PMEL-139.-Washington: NOAA, 2008.
  2. Kowalik Z., Murty T.S. Numerical modeling of ocean dynamics.- Singapore: World Scientific, 1993.
  3. Lavrentiev M., Lysakov K., Marchuk An., Oblaukhov K. Fundamentals of fast tsunami wave parameter determination technology for hazard mitigation// Sensors.-2022.- 22.- 7630.
  4. Lavrentiev M., Lysakov K., Marchuk An., Oblaukhov K., Shadrin M. Hardware acceleration of tsunami wave propagation modeling in the southern part of Japan// Appl. Sci.- 2020.- 10.-4159.
  5. Lavrentiev M.M., Marchuk An.G., Oblaukhov K.K., Romanenko A.A. Comparative testing of MOST and Mac-Cormack numerical schemes to calculate tsunami wave propagation// J. Phys. Conf. Ser.- 2020.- 1666.-012028.
  6. Lax P.D., Richtmyer R.D. Survey of the stability of linear finite difference equations// Commun. Pure Appl. Math. -1956.- 9.-C. 267-293.
  7. Liang Q., Hou J., Amouzgar R. Simulation of tsunami propagation using adaptive cartesian grids// Coast. Engrg. J.- 2015.- 57, № 4.-1550016-1-1550016-30.
  8. MacCormack R.W., Paullay A.J. Computational efficiency achieved by time splitting of finite-difference operators// В сб: «AIAA Meeting Paper. 10th Aerospace Sciences Meeting». -San-Diego, 1972.-154.
  9. Popinet S. Quadtree-adaptive tsunami modelling// Ocean Dynamics. -2011.-61.-C. 1261-1285.
  10. Shuto N., Goto C., Imamura F. Numerical simulation as a means of warning for near field tsunamis// Coast. Eng. Jpn.- 1990.- 33.- C. 173-193.
  11. Stoker J.J. Water waves. The mathematical theory with applications.-New York: Interscience Publ., 1957.
  12. Titov V.V., Gonzalez F.I. Implementation and testing of the method of splitting tsunami (MOST) model// NOAA Tech. Memo. ERL PMEL-112.- Washington: NOAA, 1997.
  13. Wang X., Power W.L. COMCOT: a tsunami generation propagation and run-up model. -Lower Hutt City: GNS Science, 2011.
  14. Yalciner A.C., Alpar B., Altinok Y., Ozbay I., Imamura F. Tsunamis in the sea of Marmara: historical documents for the past, models for future// Mar. Geol.- 2002.- 190.- C. 445-463.
  15. Zaytsev A., Kurkin A., Pelinovsky E., Yalciner A.C. Numerical tsunami model NAMI_DANCE// Sci. Tsunami Hazards.-2019.- 38.-C. 151-168.
  16. m Gridded Bathymetry Data// Japan Oceanographic Data Center [электронный ресурс].- Режим доступа: https://www.jodc.go.jp/jodcweb/JDOSS/infoJEGG.html (дата обращения: 26.06.2024).
  17. ETOPO 2022 15 Arc-Second Global Relief Model// NOAA National Centers for EnvironmentalInformation [электронный ресурс].- Режим доступа: https://www.ngdc.noaa.gov/mgg/global/relief/ETOPO2022/data/15s/15s_surface_elev_gtif/ (дата обращения: 26.06.2024).
  18. Natural disasters in 2011 caused record economic losses// EarthSky [электронный ресурс].- Режимдоступа: http://earthsky.org/earth/economic-losses-from-earthquakes-and-natural-disasters-peaked-in-2011 (дата обращения: 21.06.2024).
  19. Vitis High-Level Synthesis User Guide// AMD Technical Information Portal [электронный ресурс].-Режим доступа: https://docs.amd.com/r/en-US/ug1399-vitis-hls (дата обращения: 26.06.2024).

Copyright (c) 2024 Lavrentiev M.M., Lysakov K.F., Marchuk A.G., Oblaukhov K.K., Shadrin M.Y.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies