Boundary-value problems for differential-difference equations with nite and in nite orbits of boundaries

Cover Page

Cite item

Abstract

We consider boundary-value problems for differential-difference equations containing incommensurable shifts of arguments in the higher-order terms. We show that for the case when the orbits of the domain boundary generated by the set of shifts of the difference operator are nite, the original problem is similar to the boundary-value problem for differential-difference equations with integer shifts of arguments. The case of an in nite boundary orbit is also studied.

About the authors

E. P. Ivanova

Moscow Aviation Institute (National Research University)

Author for correspondence.
Email: elpaliv@yandex.ru
Moscow, Russia

References

  1. Россовский Л. Е. Эллиптические функционально-дифференциальные уравнения со сжатием и растяжением аргументов неизвестной функции// Соврем. мат. Фундам. направл. - 2014. - 54, № 2. - С. 3-138.
  2. Скубачевский А. Л. Краевые задачи для эллиптических дифференциально-разностных уравнений и их приложения// Усп. мат. наук. - 2016. - 32, № 2. - С. 261-278.
  3. Ivanova E. P. On coercivity of differential-difference equations with incommensurable translations of arguments// J. Math. Sci. (N. Y.). - 2019. - 239, № 6. - С. 802-816.
  4. Ivanova E. P. On smooth solutions of differential-difference equations with incommensurable shifts of arguments// Math. Notes. - 2019. - 105, № 1. - С. 140-144.
  5. Ivanova E. P. Boundary-value problems for differential-difference equations with incommensurable shifts of arguments reducible to nonlocal problems// J. Math. Sci. (N. Y.). - 2022. - 265, № 5. - С. 781-790.
  6. Rossovskii L. E. Elliptic functional differential equations with incommensurable contractions// Math. Model. Nat. Phenom. - 2017. - 12. - С. 226-239.
  7. Rossovskii L. E., Tovsultanov A. A. Elliptic functional differential equations with a ne transformations// J. Math. Anal. Appl. - 2019. - 480. - 123403.
  8. Skubachevskii A. L. Elliptic functional differential equations and aplications. - Basel-Boston-Berlin: Birkhauser, 1997.

Copyright (c) 2023 Ivanova E.P.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies